Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(14): e110611, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35695070

RESUMO

Protein phosphatase 2A (PP2A) is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The compounds iHAP1 and DT-061 have recently been reported to selectively stabilize specific PP2A-B56 complexes to mediate cell killing. We were unable to detect direct effects of iHAP1 and DT-061 on PP2A-B56 activity in biochemical assays and composition of holoenzymes. Therefore, we undertook genome-wide CRISPR-Cas9 synthetic lethality screens to uncover biological pathways affected by these compounds. We found that knockout of mitotic regulators is synthetic lethal with iHAP1 while knockout of endoplasmic reticulum (ER) and Golgi components is synthetic lethal with DT-061. Indeed we showed that iHAP1 directly blocks microtubule assembly both in vitro and in vivo and thus acts as a microtubule poison. In contrast, DT-061 disrupts both the Golgi apparatus and the ER and lipid synthesis associated with these structures. Our work provides insight into the biological pathways perturbed by iHAP1 and DT-061 causing cellular toxicity and argues that these compounds cannot be used for dissecting PP2A-B56 biology.


Assuntos
Apoptose , Proteína Fosfatase 2 , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional
2.
Mol Cell ; 81(5): 1084-1099.e6, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450211

RESUMO

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reparo de DNA por Recombinação , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Camptotecina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Inibidores da Topoisomerase I/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Quinase 1 Polo-Like
3.
Mol Cell ; 81(3): 442-458.e9, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33321094

RESUMO

Lesions on DNA uncouple DNA synthesis from the replisome, generating stretches of unreplicated single-stranded DNA (ssDNA) behind the replication fork. These ssDNA gaps need to be filled in to complete DNA duplication. Gap-filling synthesis involves either translesion DNA synthesis (TLS) or template switching (TS). Controlling these processes, ubiquitylated PCNA recruits many proteins that dictate pathway choice, but the enzymes regulating PCNA ubiquitylation in vertebrates remain poorly defined. Here we report that the E3 ubiquitin ligase RFWD3 promotes ubiquitylation of proteins on ssDNA. The absence of RFWD3 leads to a profound defect in recruitment of key repair and signaling factors to damaged chromatin. As a result, PCNA ubiquitylation is inhibited without RFWD3, and TLS across different DNA lesions is drastically impaired. We propose that RFWD3 is an essential coordinator of the response to ssDNA gaps, where it promotes ubiquitylation to drive recruitment of effectors of PCNA ubiquitylation and DNA damage bypass.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Xenopus laevis
4.
EMBO Rep ; 21(10): e50662, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32776417

RESUMO

Dominant missense mutations in the human serine protease FAM111A underlie perinatally lethal gracile bone dysplasia and Kenny-Caffey syndrome, yet how FAM111A mutations lead to disease is not known. We show that FAM111A proteolytic activity suppresses DNA replication and transcription by displacing key effectors of these processes from chromatin, triggering rapid programmed cell death by Caspase-dependent apoptosis to potently undermine cell viability. Patient-associated point mutations in FAM111A exacerbate these phenotypes by hyperactivating its intrinsic protease activity. Moreover, FAM111A forms a complex with the uncharacterized homologous serine protease FAM111B, point mutations in which cause a hereditary fibrosing poikiloderma syndrome, and we demonstrate that disease-associated FAM111B mutants display amplified proteolytic activity and phenocopy the cellular impact of deregulated FAM111A catalytic activity. Thus, patient-associated FAM111A and FAM111B mutations may drive multisystem disorders via a common gain-of-function mechanism that relieves inhibitory constraints on their protease activities to powerfully undermine cellular fitness.


Assuntos
Doenças do Desenvolvimento Ósseo , Hiperostose Cortical Congênita , Proteínas de Ciclo Celular/genética , Mutação com Ganho de Função , Humanos , Mutação , Peptídeo Hidrolases , Receptores Virais
5.
J Biol Chem ; 295(25): 8350-8362, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32350109

RESUMO

Translesion DNA synthesis (TLS) mediated by low-fidelity DNA polymerases is an essential cellular mechanism for bypassing DNA lesions that obstruct DNA replication progression. However, the access of TLS polymerases to the replication machinery must be kept tightly in check to avoid excessive mutagenesis. Recruitment of DNA polymerase η (Pol η) and other Y-family TLS polymerases to damaged DNA relies on proliferating cell nuclear antigen (PCNA) monoubiquitylation and is regulated at several levels. Using a microscopy-based RNAi screen, here we identified an important role of the SUMO modification pathway in limiting Pol η interactions with DNA damage sites in human cells. We found that Pol η undergoes DNA damage- and protein inhibitor of activated STAT 1 (PIAS1)-dependent polySUMOylation upon its association with monoubiquitylated PCNA, rendering it susceptible to extraction from DNA damage sites by SUMO-targeted ubiquitin ligase (STUbL) activity. Using proteomic profiling, we demonstrate that Pol η is targeted for multisite SUMOylation, and that collectively these SUMO modifications are essential for PIAS1- and STUbL-mediated displacement of Pol η from DNA damage sites. These findings suggest that a SUMO-driven feedback inhibition mechanism is an intrinsic feature of TLS-mediated lesion bypass functioning to curtail the interaction of Pol η with PCNA at damaged DNA to prevent harmful mutagenesis.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Linhagem Celular Tumoral , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/análise , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteômica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
J Cell Biol ; 218(12): 3943-3953, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31615875

RESUMO

The ATR kinase is a master regulator of the cellular response to DNA replication stress. Activation of ATR relies on dual pathways involving the TopBP1 and ETAA1 proteins, both of which harbor ATR-activating domains (AADs). However, the exact contribution of the recently discovered ETAA1 pathway to ATR signaling in different contexts remains poorly understood. Here, using an unbiased CRISPR-Cas9-based genome-scale screen, we show that the ATR-stimulating function of ETAA1 becomes indispensable for cell fitness and chromosome stability when the fidelity of DNA replication is compromised. We demonstrate that the ATR-activating potential of ETAA1 is controlled by cell cycle- and replication stress-dependent phosphorylation of highly conserved residues within its AAD, and that the stimulatory impact of these modifications is required for the ability of ETAA1 to prevent mitotic chromosome abnormalities following replicative stress. Our findings suggest an important role of ETAA1 in protecting against genome instability arising from incompletely duplicated DNA via regulatory control of its ATR-stimulating potential.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Sistemas CRISPR-Cas , Ciclo Celular , Linhagem Celular Tumoral , Aberrações Cromossômicas , Dano ao DNA , Genoma Humano , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mitose , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais
7.
EMBO J ; 38(21): e102361, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31613024

RESUMO

The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.


Assuntos
Adenosina Trifosfatases/metabolismo , Ataxina-3/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Ataxina-3/genética , Sobrevivência Celular , Cromatina/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
EMBO Rep ; 20(11): e49105, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31544332

RESUMO

Complex regulatory circuits determine whether DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways, a carefully balanced equilibrium of which is critical for genome stability. In this issue of EMBO Reports, Deng et al [1] report that a novel p53-suppressed long noncoding RNA (lncRNA), PRLH1, interacts with and stabilizes the E3 ubiquitin ligase RNF169 to stimulate HDR-mediated DSB repair and proliferation of p53-deficient cancer cells. These findings suggest a new regulatory principle in modulating DSB repair pathway selection that may contribute to tumorigenesis.


Assuntos
RNA Longo não Codificante , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Recombinação Homóloga , Retroelementos
9.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253574

RESUMO

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Assuntos
Proteína BRCA1/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes/genética , Chaperonas de Histonas/genética , Neoplasias/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Núcleo Celular/genética , Núcleo Celular/imunologia , Citoplasma/genética , Citoplasma/imunologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/imunologia , Enzimas Desubiquitinantes/imunologia , Células HeLa , Humanos , Imunidade Celular/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Neoplasias/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Ligação Proteica/genética , Ubiquitina/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
10.
Cell Rep ; 26(13): 3511-3521.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917308

RESUMO

Inflammatory signaling is restricted through degradation and the translational repression of cytokine mRNAs. A key factor in this regulation is tristetraprolin (TTP), an RNA-binding protein (RBP) that recruits RNA-destabilizing factors and the translation inhibitory complex 4EHP-GIGYF1/2 to AU-rich element (ARE)-containing mRNAs. Here, we show that the RBP ZNF598 contributes to the same regulatory module in a TTP-like manner. Similar to TTP, ZNF598 harbors three proline-rich motifs that bind the GYF domain of GIGYF1. RNA sequencing experiments showed that ZNF598 is required for the regulation of known TTP targets, including IL-8 and CSF2 mRNA. Furthermore, we demonstrate that ZNF598 binds to IL-8 mRNA, but not TNF mRNA. Collectively, our findings highlight that ZNF598 functions as an RBP that buffers the level of a range of mRNAs. We propose that ZNF598 is a TTP-like factor that can contribute to the regulation of the inflammatory potential of cytokine-producing cells.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Tristetraprolina/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Inflamação/genética , Ligação Proteica , RNA Mensageiro/metabolismo
11.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656893

RESUMO

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Proteínas Mad2/antagonistas & inibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Mol Cell ; 70(1): 165-174.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576528

RESUMO

Deubiquitylating enzymes (DUBs) enhance the dynamics of the versatile ubiquitin (Ub) code by reversing and regulating cellular ubiquitylation processes at multiple levels. Here we discovered that the uncharacterized human protein ZUFSP (zinc finger with UFM1-specific peptidase domain protein/C6orf113/ZUP1), which has been annotated as a potentially inactive UFM1 protease, and its fission yeast homolog Mug105 define a previously unrecognized class of evolutionarily conserved cysteine protease DUBs. Human ZUFSP selectively interacts with and cleaves long K63-linked poly-Ub chains by means of tandem Ub-binding domains, whereas it displays poor activity toward mono- or di-Ub substrates. In cells, ZUFSP is recruited to and regulates K63-Ub conjugates at genotoxic stress sites, promoting chromosome stability upon replication stress in a manner dependent on its catalytic activity. Our findings establish ZUFSP as a new type of linkage-selective cysteine peptidase DUB with a role in genome maintenance pathways.


Assuntos
Neoplasias Ósseas/enzimologia , Dano ao DNA , Enzimas Desubiquitinantes/metabolismo , Instabilidade Genômica , Osteossarcoma/enzimologia , Poliubiquitina/metabolismo , Epitélio Pigmentado da Retina/enzimologia , Sítios de Ligação , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/genética , Células HEK293 , Humanos , Lisina , Osteossarcoma/genética , Poliubiquitina/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Ubiquitinação
13.
Nat Commun ; 9(1): 1017, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523821

RESUMO

Ultraviolet (UV) light radiation induces the formation of bulky photoproducts in the DNA that globally affect transcription and splicing. However, the signaling pathways and mechanisms that link UV-light-induced DNA damage to changes in RNA metabolism remain poorly understood. Here we employ quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins as primary substrates and 14-3-3 as direct readers of p38-MK2-dependent phosphorylation induced by UV light. Mechanistically, we show that MK2 phosphorylates the RNA-binding subunit of the NELF complex NELFE on Serine 115. NELFE phosphorylation promotes the recruitment of 14-3-3 and rapid dissociation of the NELF complex from chromatin, which is accompanied by RNA polymerase II elongation.


Assuntos
Dano ao DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Fosforilação , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
14.
EMBO Rep ; 18(11): 1991-2003, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021206

RESUMO

Single-stranded DNA (ssDNA) regions form as an intermediate in many DNA-associated transactions. Multiple cellular proteins interact with ssDNA via the oligonucleotide/oligosaccharide-binding (OB) fold domain. The heterotrimeric, multi-OB fold domain-containing Replication Protein A (RPA) complex has an essential genome maintenance role, protecting ssDNA regions from nucleolytic degradation and providing a recruitment platform for proteins involved in responses to replication stress and DNA damage. Here, we identify the uncharacterized protein RADX (CXorf57) as an ssDNA-binding factor in human cells. RADX binds ssDNA via an N-terminal OB fold cluster, which mediates its recruitment to sites of replication stress. Deregulation of RADX expression and ssDNA binding leads to enhanced replication fork stalling and degradation, and we provide evidence that a balanced interplay between RADX and RPA ssDNA-binding activities is critical for avoiding these defects. Our findings establish RADX as an important component of cellular pathways that promote DNA replication integrity under basal and stressful conditions by means of multiple ssDNA-binding proteins.


Assuntos
Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteína de Replicação A/genética , Sítios de Ligação , Linhagem Celular Tumoral , Dano ao DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Modelos Moleculares , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo
15.
Nat Cell Biol ; 18(12): 1357-1366, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27820601

RESUMO

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts.


Assuntos
Cromossomos de Mamíferos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Heterocromatina/metabolismo , Recombinação Homóloga/genética , Humanos , Meiose , Camundongos , Ligação Proteica , Transdução de Sinais , Xenopus
16.
Nat Cell Biol ; 18(11): 1196-1207, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723717

RESUMO

Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate that parallel TopBP1- and ETAA1-mediated pathways underlie ATR activation and that their combined action is essential for coping with replication stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos de Superfície/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilação
17.
Nature ; 534(7609): 714-718, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27338793

RESUMO

After DNA replication, chromosomal processes including DNA repair and transcription take place in the context of sister chromatids. While cell cycle regulation can guide these processes globally, mechanisms to distinguish pre- and post-replicative states locally remain unknown. Here we reveal that new histones incorporated during DNA replication provide a signature of post-replicative chromatin, read by the human TONSL­MMS22L homologous recombination complex. We identify the TONSL ankyrin repeat domain (ARD) as a reader of histone H4 tails unmethylated at K20 (H4K20me0), which are specific to new histones incorporated during DNA replication and mark post-replicative chromatin until the G2/M phase of the cell cycle. Accordingly, TONSL­MMS22L binds new histones H3­H4 both before and after incorporation into nucleosomes, remaining on replicated chromatin until late G2/M. H4K20me0 recognition is required for TONSL­MMS22L binding to chromatin and accumulation at challenged replication forks and DNA lesions. Consequently, TONSL ARD mutants are toxic, compromising genome stability, cell viability and resistance to replication stress. Together, these data reveal a histone-reader-based mechanism for recognizing the post-replicative state, offering a new angle to understand DNA repair with the potential for targeted cancer therapy.


Assuntos
Cromatina/química , Cromatina/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/genética , Instabilidade Genômica , Histonas/química , Recombinação Homóloga , Humanos , Lisina/metabolismo , Metilação , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
18.
J Cell Biol ; 212(1): 63-75, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26711499

RESUMO

Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication.


Assuntos
Replicação do DNA/genética , Instabilidade Genômica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Células Tumorais Cultivadas
19.
Nat Commun ; 6: 7499, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151477

RESUMO

XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation of SUMOylated XPC after DNA damage. However, the exact regulatory function of these modifications in vivo remains elusive. Here we show that RNF111 is required for efficient repair of ultraviolet-induced DNA lesions. RNF111-mediated ubiquitylation promotes the release of XPC from damaged DNA after NER initiation, and is needed for stable incorporation of the NER endonucleases XPG and ERCC1/XPF. Our data suggest that RNF111, together with the CRL4(DDB2) ubiquitin ligase complex, is responsible for sequential XPC ubiquitylation, which regulates the recruitment and release of XPC and is crucial for efficient progression of the NER reaction, thereby providing an extra layer of quality control of NER.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Proteína SUMO-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Proteínas Nucleares/genética , RNA Interferente Pequeno , Proteína SUMO-1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
EMBO J ; 34(10): 1385-98, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25862789

RESUMO

Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway.


Assuntos
Proteínas do Olho/metabolismo , Anemia de Fanconi/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Proteínas do Olho/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Imunofluorescência , Humanos , Imunoquímica , Estabilidade Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA