Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Surg ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864230

RESUMO

OBJECTIVE: To evaluate the persistence of intestinal microbiome dysbiosis and gut-plasma metabolomic perturbations following severe trauma or sepsis weeks after admission in patients experiencing chronic critical illness (CCI). SUMMARY: Trauma and sepsis can lead to gut dysbiosis and alterations in the plasma and fecal metabolome. However, the impact of these perturbations and correlations between gut dysbiosis and the plasma metabolome in chronic critical illness have not been studied. METHODS: A prospective observational cohort study was performed with healthy subjects, severe trauma patients, patients with sepsis residing in an intensive care unit (ICU) for 2-3 weeks. A high-throughput multi-omics approach was utilized to evaluate the gut microbial and gut-plasma metabolite responses in critically ill trauma and sepsis patients 14-21 days after ICU admission. RESULTS: Patients in the sepsis and trauma cohorts demonstrated strikingly depleted gut microbiome diversity, with significant alterations and specific pathobiome patterns in the microbiota composition compared to healthy subjects. Further subgroup analyses based on sex revealed resistance to changes in microbiome diversity among female trauma patients compared to healthy counterparts. Sex-specific changes in fecal metabolites were also observed after trauma and sepsis, while plasma metabolite changes were similar in both males and females. CONCLUSIONS: Dysbiosis induced by trauma and sepsis persists up to 14-21 days after onset and is sex-specific, underscoring the implication of pathobiome and entero-septic microbial-metabolite perturbations in post-sepsis and post-trauma CCI. This indicates resilience to infection or injury in females' microbiome and should inform and facilitate future precision/personalized medicine strategies in the intensive care unit.

2.
Nat Commun ; 15(1): 4720, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830847

RESUMO

Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.


Assuntos
Adesivos Teciduais , Cicatrização , Animais , Humanos , Elasticidade , Células-Tronco Mesenquimais/citologia , Camundongos , Adesivo Tecidual de Fibrina , Masculino , Materiais Biocompatíveis/química
3.
Shock ; 62(2): 208-216, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713581

RESUMO

ABSTRACT: Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.


Assuntos
Monócitos , Sepse , Transcriptoma , Humanos , Monócitos/metabolismo , Monócitos/imunologia , Sepse/imunologia , Sepse/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Necrose Tumoral alfa/metabolismo
4.
Surgery ; 176(2): 541-543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760231

RESUMO

Precision and personalized medicine remain an elusive but illustrious goal in the realm of critical care, particularly in the areas of trauma and sepsis. These aims specifically refer to data gathering, interpretation, and treatment application on an individualized basis in the clinical care of patients. Until now, personalized medicine has mainly remained focused on genetics and epigenetic phenomena and has propelled clinical care forward, especially in the field of oncology. Advances in technology and methodology continue to proliferate in early-phase research, and some of these advancements are well poised to break into the clinical sphere of critical care. Here, we describe 2 topics at the forefront of investigation with potent and imminent potential for clinical application.


Assuntos
Medicina de Precisão , Sepse , Ferimentos e Lesões , Humanos , Medicina de Precisão/métodos , Sepse/terapia , Sepse/diagnóstico , Ferimentos e Lesões/terapia , Ferimentos e Lesões/diagnóstico , Ferimentos e Lesões/complicações , Cuidados Críticos/métodos
5.
J Trauma Acute Care Surg ; 96(4): 548-556, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151766

RESUMO

INTRODUCTION: Severe trauma disrupts bone marrow function and is associated with persistent anemia and altered hematopoiesis. Previously, plasma-derived exosomes isolated after trauma have been shown to suppress in vitro bone marrow function. However, the cargo contained in these vesicles has not been examined. We hypothesized that trauma plasma-derived exosomes exhibit microRNA (miRNA) changes that impact bone marrow function after severe injury. METHODS: Plasma was collected from a prospective cohort study of trauma patients (n = 15; 7 males, 8 females) with hip and/or femur fractures and an Injury Severity Score of ≥15; elective total hip arthroplasty (THA) patients (n = 8; 4 males, 4 females) served as operative controls. Exosomes were isolated from plasma with the Invitrogen Total Exosome Isolation Kit (Thermo Fisher Scientific, Waltham, MA), and RNA was isolated using a miRNeasy Mini Kit (Qiagen, Hilden, Germany). Direct quantification of miRNA was performed by NanoString Technologies on a human miRNA gene panel and analyzed with nSolver with significance defined as p < 0.05. RESULTS: There were no differences in age or sex distribution between trauma and THA groups; the average Injury Severity Score was 23. Trauma plasma-derived exosomes had 60 miRNA identities that were significantly downregulated and 3 miRNAs that were upregulated when compared with THA ( p < 0.05). Twelve of the downregulated miRNAs have a direct role in hematopoiesis regulation. Furthermore, male trauma plasma-derived exosomes demonstrated downregulation of 150 miRNAs compared with male THA ( p < 0.05). Female trauma plasma-derived exosomes demonstrated downregulation of only four miRNAs and upregulation of two miRNAs compared with female THA ( p < 0.05). CONCLUSION: We observed downregulation of 12 miRNAs linked to hematopoiesis along with sexual dimorphism in miRNA expression from plasma-derived exosomes following severe trauma. Understanding sexually dimorphic miRNA expression provides new insight into sex-based changes in postinjury systemic inflammation, immune system dysregulation, and bone marrow dysfunction and will aid us in more precise future potential therapeutic strategies. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III.


Assuntos
Exossomos , MicroRNAs , Humanos , Masculino , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos Prospectivos , Medula Óssea , Exossomos/genética , Exossomos/metabolismo , Inflamação/metabolismo
6.
Front Immunol ; 14: 1188830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404812

RESUMO

Acute radiation syndrome (ARS) develops after exposure to high doses of ionizing radiation and features immune suppression and organ failure. Currently, there are no diagnostics to identify the occurrence or severity of exposure and there are limited treatments and preventative strategies to mitigate ARS. Extracellular vesicles (EVs) are mediators of intercellular communication that contribute to immune dysfunction across many diseases. We investigated if EV cargo can identify whole body irradiation (WBIR) exposure and if EVs promote ARS immune dysfunction. We hypothesized that beneficial EVs derived from mesenchymal stem cells (MSC-EVs) would blunt ARS immune dysfunction and might serve as prophylactic radioprotectants. Mice received WBIR (2 or 9 Gy) with assessment of EVs at 3 and 7 days after exposure. LC-MS/MS proteomic analysis of WBIR-EVs found dose-related changes as well as candidate proteins that were increased with both doses and timepoints (34 total) such as Thromboxane-A Synthase and lymphocyte cytosolic protein 2. Suprabasin and Sarcalumenin were increased only after 9 Gy suggesting these proteins may indicate high dose/lethal exposure. Analysis of EV miRNAs identified miR-376 and miR-136, which were increased up to 200- and 60-fold respectively by both doses of WBIR and select miRNAs such as miR-1839 and miR-664 were increased only with 9 Gy. WBIR-EVs (9 Gy) were biologically active and blunted immune responses to LPS in RAW264.7 macrophages, inhibiting canonical signaling pathways associated with wound healing and phagosome formation. When given 3 days after exposure, MSC-EVs slightly modified immune gene expression changes in the spleens of mice in response to WBIR and in a combined radiation plus burn injury exposure (RCI). MSC-EVs normalized the expression of certain key immune genes such as NFκBia and Cxcr4 (WBIR), Map4k1, Ccr9 and Cxcl12 (RCI) and lowered plasma TNFα cytokine levels after RCI. When given prophylactically (24 and 3 hours before exposure), MSC-EVs prolonged survival to the 9 Gy lethal exposure. Thus, EVs are important participants in ARS. EV cargo might be used to diagnose WBIR exposure, and MSC-EVs might serve as radioprotectants to blunt the impact of toxic radiation exposure.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , MicroRNAs/genética , Radiação Ionizante , Vesículas Extracelulares/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012680

RESUMO

Burn patients are subject to significant acute immune and metabolic dysfunction. Concomitant inhalation injury increases mortality by 20%. In order to identify specific immune and metabolic signaling pathways in burn (B), inhalation (I), and combined burn-inhalation (BI) injury, unbiased nanoString multiplex technology was used to investigate gene expression within peripheral blood mononuclear cells (PBMCs) from burn patients, with and without inhalation injury. PBMCs were collected from 36 injured patients and 12 healthy, non-burned controls within 72 h of injury. mRNA was isolated and hybridized with probes for 1342 genes related to general immunology and cellular metabolism. From these specific gene patterns, specific cellular perturbations and signaling pathways were inferred using robust bioinformatic tools. In both B and BI injuries, elements of mTOR, PPARγ, TLR, and NF-kB signaling pathways were significantly altered within PBMC after injury compared to PBMC from the healthy control group. Using linear regression modeling, (1) DEPTOR, LAMTOR5, PPARγ, and RPTOR significantly correlated with patient BMI; (2) RPTOR significantly correlated with patient length of stay, and (3) MRC1 significantly correlated with the eventual risk of patient mortality. Identification of mediators of this immunometabolic response that can act as biomarkers and/or therapeutic targets could ultimately aid the management of burn patients.


Assuntos
Queimaduras por Inalação , Lesão Pulmonar , Queimaduras por Inalação/genética , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares , NF-kappa B/genética , PPAR gama/genética , Estudos Retrospectivos , Serina-Treonina Quinases TOR/genética
8.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955914

RESUMO

Severe burn injury leads to a cascade of local and systemic immune responses that trigger an extreme state of immune dysfunction, leaving the patient highly susceptible to acute and chronic infection. When combined with inhalation injury, burn patients have higher mortality and a greater chance of developing secondary respiratory complications including infection. No animal model of combined burn and inhalation injury (B+I) exists that accurately mirrors the human clinical picture, nor are there any effective immunotherapies or predictive models of the risk of immune dysfunction. Our earlier work showed that the mechanistic/mammalian target of rapamycin (mTOR) pathway is activated early after burn injury, and its chemical blockade at injury reduced subsequent chronic bacterial susceptibility. It is unclear if mTOR plays a role in the exacerbated immune dysfunction seen after B+I injury. We aimed to: (1) characterize a novel murine model of B+I injury, and (2) investigate the role of mTOR in the immune response after B+I injury. Pulmonary and systemic immune responses to B+I were characterized in the absence or presence of mTOR inhibition at the time of injury. Data describe a murine model of B+I with inhalation-specific immune phenotypes and implicate mTOR in the acute immune dysfunction observed.


Assuntos
Queimaduras , Lesão Pulmonar , Animais , Queimaduras/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade , Imunoterapia , Lesão Pulmonar/complicações , Mamíferos , Camundongos , Serina-Treonina Quinases TOR
9.
J Trauma Acute Care Surg ; 93(5): 702-711, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363228

RESUMO

BACKGROUND: No methods exist to rapidly and accurately quantify the immune insult created by burn injuries. The development of a rapid, noninvasive clinical biomarker assay that evaluates a burn patient's underlying immune dysfunction and predicts clinical outcomes could transform burn care. We aimed to determine a set of peripheral biomarkers that correlates with clinical outcomes of burn patients. METHODS: This prospective observational study enrolled two patient cohorts within a single burn center into an institutionally approved institutional review board study. Blood draws were performed <48 hours after injury. Initial unbiased immune gene expression analysis compared 23 burn patients and 6 healthy controls using multiplex immune gene expression analysis of RNA from peripheral blood mononuclear cells. We then performed confirmatory outcomes analysis in 109 burn patients and 19 healthy controls using a targeted rapid quantitative polymerase chain reaction. Findings were validated and modeled associations with clinical outcomes using a regression model. RESULTS: A total of 149 genes with a significant difference in expression from burn patients compared with controls were identified. Pathway analysis identified pathways related to interleukin (IL)-10 and inducible nitric oxide synthase signaling to have significant z scores. quantitative polymerase chain reaction analysis of IL-10, IL-12, arginase 1 (ARG1), and inducible nitric oxide synthase demonstrated that burn injury was associated with increased expression of ARG1 and IL-10, and decreased expression of nitric oxide synthase 2 (NOS2) and IL-12. Burn severity, acute lung injury, development of infection, failure of skin autograft, and mortality significantly correlated with expression of one or more of these genes. Ratios of IL-10/IL-12, ARG1/NOS2, and (ARG1-IL-10)/(NOS2-IL-12) transcript levels further improved the correlation with outcomes. Using a multivariate regression model, adjusting for patient confounders demonstrated that (ARG1-IL-10)/(NOS2-IL-12) significantly correlated with burn severity and development of acute lung injury. CONCLUSION: We present a means to predict patient outcomes early after burn injury using peripheral blood, allowing early identification of underlying immune dysfunction. LEVEL OF EVIDENCE: Prognostic/Epidemiological; Level II.


Assuntos
Lesão Pulmonar Aguda , Arginase , Humanos , Arginase/genética , Arginase/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Leucócitos Mononucleares/metabolismo , Lesão Pulmonar Aguda/metabolismo
10.
J Leukoc Biol ; 111(1): 33-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342045

RESUMO

Extracellular vesicles (EVs) have emerged as key regulators of immune function across multiple diseases. Severe burn injury is a devastating trauma with significant immune dysfunction that results in an ∼12% mortality rate due to sepsis-induced organ failure, pneumonia, and other infections. Severe burn causes a biphasic immune response: an early (0-72 h) hyper-inflammatory state, with release of damage-associated molecular pattern molecules, such as high-mobility group protein 1 (HMGB1), and proinflammatory cytokines (e.g., IL-1ß), followed by an immunosuppressive state (1-2+ wk post injury), associated with increased susceptibility to life-threatening infections. We have reported that early after severe burn injury HMGB1 and IL-1ß are enriched in plasma EVs. Here we tested the impact of EVs isolated after burn injury on phenotypic and functional consequences in vivo and in vitro using adoptive transfers of EV. EVs isolated early from mice that underwent a 20% total body surface area burn injury (burn EVs) caused similar hallmark cytokine responses in naïve mice to those seen in burned mice. Burn EVs transferred to RAW264.7 macrophages caused similar functional (i.e., cytokine secretion) and immune gene expression changes seen with their associated phase of post-burn immune dysfunction. Burn EVs isolated early (24 h) induced MCP-1, IL-12p70, and IFNγ, whereas EVs isolated later blunted RAW proinflammatory responses to bacterial endotoxin (LPS). We also describe significantly increased HMGB1 cargo in burn EVs purified days 1 to 7 after injury. Thus, burn EVs cause immune outcomes in naïve mice and macrophages similar to findings after severe burn injury, suggesting EVs promote post-burn immune dysfunction.


Assuntos
Queimaduras/imunologia , Vesículas Extracelulares/imunologia , Macrófagos/imunologia , Animais , Queimaduras/sangue , Queimaduras/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/patologia , Feminino , Proteína HMGB1/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Células RAW 264.7
11.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576246

RESUMO

Severe burn injury is a devastating form of trauma that results in persistent immune dysfunction with associated morbidity and mortality. The underlying drivers of this immune dysfunction remain elusive, and there are no prognostic markers to identify at-risk patients. Extracellular vesicles (EVs) are emerging as drivers of immune dysfunction as well as biomarkers. We investigated if EVs after burn injury promote macrophage activation and assessed if EV contents can predict length of hospital stay. EVs isolated early from mice that received a 20% total body surface area (TBSA) burn promoted proinflammatory responses in cultured splenic macrophages. Unbiased LC-MS/MS proteomic analysis of early EVs (<72 h post-injury) from mice and humans showed some similarities including enrichment of acute phase response proteins such as CRP and SAA1. Semi-unbiased assessment of early human burn patient EVs found alterations consistent with increased proinflammatory signaling and loss of inhibition of CRP expression. In a sample of 50 patients with large burn injury, EV SAA1 and CRP were correlated with TBSA injury in both sexes and were correlated with length of hospital stay in women. These findings suggest that EVs are drivers of immune responses after burn injury and their content may predict hospital course.


Assuntos
Queimaduras/metabolismo , Vesículas Extracelulares/metabolismo , Tempo de Internação , Receptores Imunológicos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Adulto , Animais , Biomarcadores , Proteína C-Reativa/metabolismo , Feminino , Humanos , Sistema Imunitário , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos , Baço/metabolismo
12.
Burns ; 45(3): 627-640, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833100

RESUMO

OBJECTIVE: Burn injury induces an acute hyperactive immune response followed by a chronic immune dysregulation that leaves those afflicted susceptible to multiple secondary infections. Many murine models are able to recapitulate the acute immune response to burn injury, yet few models are able to recapitulate long-term immune suppression and thus chronic susceptibility to bacterial infections seen in burn patients. This has hindered the field, making evaluation of the mechanisms responsible for these susceptibilities difficult to study. Herein we describe a novel mouse model of burn injury that promotes chronic immune suppression allowing for susceptibility to primary and secondary infections and thus allows for the evaluation of associated mechanisms. METHODS: C57Bl/6 mice receiving a full-thickness contact burn were infected with Pseudomonas aeruginosa 14 days (primary infection) and/or 17 days (secondary infection) after burn or sham injury. The survival, pulmonary and systemic bacterial load as well as frequency and function of innate immune cells (neutrophils and macrophages) were evaluated. RESULTS: Following secondary infection, burn mice were less effective in clearance of bacteria compared to sham injured or burn mice following a primary infection. Following secondary infection both neutrophils and macrophages recruited to the airways exhibited reduced production of anti-bacterial reactive oxygen and nitrogen species and the pro-inflammatory cytokineIL-12 while macrophages demonstrated increased expression of the anti-inflammatory cytokine interleukin-10 compared to those from sham burned mice and/or burn mice receiving a primary infection. In addition the BALF from these mice contained significantly higher level so of the anti-inflammatory cytokine IL-4 compared to those from sham burned mice and/or burn mice receiving a primary infection. CONCLUSIONS: Burn-mediated protection from infection is transient, with a secondary infection inducing immune protection to collapse. Repeated infection leads to increased neutrophil and macrophage numbers in the lungs late after burn injury, with diminished innate immune cell function and an increased anti-inflammatory cytokine environment.


Assuntos
Queimaduras/imunologia , Tolerância Imunológica/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Animais , Infecções Bacterianas/imunologia , Carga Bacteriana , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Hospedeiro Imunocomprometido/imunologia , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-4/imunologia , Pulmão/microbiologia , Camundongos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Recidiva , Fatores de Tempo
13.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L822-L834, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29368547

RESUMO

Smoke inhalation associated with structural fires, wildfires, or explosions leads to lung injury, for which innovative and clinically relevant animal models are needed to develop effective therapeutics. We have previously reported that damage-associated molecular patterns (DAMPs) and anti-inflammatory cytokines correlate with infectious complications in patients diagnosed with inhalational injury. In this study, we describe a novel and translational murine model of acute inhalational injury characterized by an accumulation of protein and neutrophils in the bronchoalveolar space, as well as histological evidence of tissue damage. Mice were anesthetized, and a cannula was placed in the trachea and exposed to smoldering plywood smoke three times for 2-min intervals in a smoke chamber. Here we demonstrate that this model recapitulates clinically relevant phenotypes, including early release of double-stranded DNA (dsDNA), IL-10, monocyte chemoattractant protein (MCP)-1, and CXCL1 along with neutrophilia early after injury, accompanied by subsequent susceptibility to opportunistic infection with Pseudomonas aeruginosa. Further investigation of the model, and in turn a reanalysis of patient samples, revealed a late release of the DAMP hyaluronic acid (HA) from the lung. Using nitric oxide synthase-deficient mice, we found that Nos2 was required for increases in IL-10, MCP-1, and HA following injury but not release of dsDNA, CXCL1 expression, early neutrophilia, or susceptibility to opportunistic infection. Depletion of CXCL1 attenuated early neutrophil recruitment, leading to decreased histopathology scores and improved bacterial clearance in this model of smoke inhalation. Together, these data highlight the potential therapeutic benefit of attenuating neutrophil recruitment in the first 24 h after injury in patients.


Assuntos
Lesão Pulmonar Aguda/imunologia , Infecções Bacterianas/complicações , Quimiocina CXCL1/metabolismo , Pulmão/imunologia , Infiltração de Neutrófilos/imunologia , Fumaça/efeitos adversos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Administração por Inalação , Animais , Infecções Bacterianas/microbiologia , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Citocinas/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
PLoS Biol ; 15(11): e2003981, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29176757

RESUMO

Chronic coinfections of Staphylococcus aureus and Pseudomonas aeruginosa frequently fail to respond to antibiotic treatment, leading to significant patient morbidity and mortality. Currently, the impact of interspecies interaction on S. aureus antibiotic susceptibility remains poorly understood. In this study, we utilize a panel of P. aeruginosa burn wound and cystic fibrosis (CF) lung isolates to demonstrate that P. aeruginosa alters S. aureus susceptibility to bactericidal antibiotics in a variable, strain-dependent manner and further identify 3 independent interactions responsible for antagonizing or potentiating antibiotic activity against S. aureus. We find that P. aeruginosa LasA endopeptidase potentiates lysis of S. aureus by vancomycin, rhamnolipids facilitate proton-motive force-independent tobramycin uptake, and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) induces multidrug tolerance in S. aureus through respiratory inhibition and reduction of cellular ATP. We find that the production of each of these factors varies between clinical isolates and corresponds to the capacity of each isolate to alter S. aureus antibiotic susceptibility. Furthermore, we demonstrate that vancomycin treatment of a S. aureus mouse burn infection is potentiated by the presence of a LasA-producing P. aeruginosa population. These findings demonstrate that antibiotic susceptibility is complex and dependent not only upon the genotype of the pathogen being targeted, but also on interactions with other microorganisms in the infection environment. Consideration of these interactions will improve the treatment of polymicrobial infections.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Glicolipídeos/farmacologia , Interações Microbianas/fisiologia , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Animais , Queimaduras/microbiologia , Queimaduras/patologia , Coinfecção , Glicolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/crescimento & desenvolvimento , Vancomicina/farmacologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
15.
J Immunol ; 198(6): 2426-2433, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159904

RESUMO

With enhanced concerns of terrorist attacks, dual exposure to radiation and thermal combined injury (RCI) has become a real threat with devastating immunosuppression. NLRP12, a member of the NOD-like receptor family, is expressed in myeloid and bone marrow cells and was implicated as a checkpoint regulator of inflammatory cytokines, as well as an inflammasome activator. We show that NLRP12 has a profound impact on hematopoietic recovery during RCI by serving as a checkpoint of TNF signaling and preventing hematopoietic apoptosis. Using a mouse model of RCI, increased NLRP12 expression was detected in target tissues. Nlrp12-/- mice exhibited significantly greater mortality, an inability to fight bacterial infection, heightened levels of proinflammatory cytokines, overt granulocyte/monocyte progenitor cell apoptosis, and failure to reconstitute peripheral myeloid populations. Anti-TNF Ab administration improved peripheral immune recovery. These data suggest that NLRP12 is essential for survival after RCI by regulating myelopoiesis and immune reconstitution.


Assuntos
Queimaduras/imunologia , Hematopoese , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lesões Experimentais por Radiação/imunologia , Animais , Apoptose , Autorrenovação Celular , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Irradiação Corporal Total
16.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L855-60, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25770180

RESUMO

Bacterial infection is a major cause of morbidity affecting outcome following burn and inhalation injury. While experimental burn and inhalation injury animal models have suggested that mediators of cell damage and inflammation increase the risk of infection, few studies have been done on humans. This is a prospective, observational study of patients admitted to the North Carolina Jaycee Burn Center at the University of North Carolina who were intubated and on mechanical ventilation for treatment of burn and inhalational injury. Subjects were enrolled over a 2-yr period and followed till discharge or death. Serial bronchial washings from clinically indicated bronchoscopies were collected and analyzed for markers of tissue injury and inflammation. These include damage-associated molecular patterns (DAMPs) such as hyaluronic acid (HA), double-stranded DNA (dsDNA), heat-shock protein 70 (HSP-70), and high-mobility group protein B-1 (HMGB-1). The study population was comprised of 72 patients who had bacterial cultures obtained for clinical indications. Elevated HA, dsDNA, and IL-10 levels in bronchial washings obtained early (the first 72 h after injury) were significantly associated with positive bacterial respiratory cultures obtained during the first 14 days postinjury. Independent of initial inhalation injury severity and extent of surface burn, elevated levels of HA dsDNA and IL-10 in the central airways obtained early after injury are associated with subsequent positive bacterial respiratory cultures in patients intubated after acute burn/inhalation injury.


Assuntos
Infecções Bacterianas/patologia , Biomarcadores/metabolismo , Queimaduras por Inalação/metabolismo , Lesão Pulmonar/patologia , Adulto , Broncoscopia , DNA/metabolismo , Feminino , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Interleucina-10/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Respiração Artificial
17.
PLoS One ; 9(1): e85623, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454904

RESUMO

Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial clearance has been linked to specific deviations in the innate immune response. We hypothesized that innate immune modulations observed during sepsis also contribute to increased bacterial susceptibility after severe trauma. A well-established murine model of burn injury, used to replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly spreads systemically. The systemic IL-10/IL-12 axis was skewed after burn injury with infection as indicated by a significant elevation in serum IL-10 and polarization of neutrophils into an anti-inflammatory ("N2"; IL-10(+) IL-12(-)) phenotype. Infection with an attenuated P. aeruginosa strain (ΔCyaB) was cleared better than the wildtype strain and was associated with an increased pro-inflammatory neutrophil ("N1"; IL-10(-)IL-12(+)) response in burn mice. This suggests that neutrophil polarization influences bacterial clearance after burn injury. Administration of a TLR5 agonist, flagellin, after burn injury restored the neutrophil response towards a N1 phenotype resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation. This study details specific alterations in innate cell populations after burn injury that contribute to increased susceptibility to bacterial infection. In addition, for the first time, it identifies neutrophil polarization as a therapeutic target for the reversal of bacterial susceptibility after injury.


Assuntos
Flagelina/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-10/fisiologia , Interleucina-12/fisiologia , Neutrófilos/imunologia , Infecções por Pseudomonas/prevenção & controle , Sepse/prevenção & controle , Animais , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/imunologia , Polaridade Celular , Feminino , Flagelina/uso terapêutico , Imunidade Inata , Fatores Imunológicos/uso terapêutico , Interleucina-10/antagonistas & inibidores , Interleucina-12/antagonistas & inibidores , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Infecções por Pseudomonas/etiologia , Sepse/etiologia , Receptores Toll-Like/metabolismo
18.
PLoS One ; 8(5): e64250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691180

RESUMO

BACKGROUND: Acute lung injury (ALI) is a major factor determining morbidity following burns and inhalational injury. In experimental models, factors potentially contributing to ALI risk include inhalation of toxins directly causing cell damage; inflammation; and infection. However, few studies have been done in humans. METHODS: We carried out a prospective observational study of patients admitted to the NC Jaycees Burn Center who were intubated and on mechanical ventilation for burns and suspected inhalational injury. Subjects were enrolled over an 8-month period and followed till discharge or death. Serial bronchial washings from clinically-indicated bronchoscopies were collected and analyzed for markers of cell injury and inflammation. These markers were compared with clinical markers of ALI. RESULTS: Forty-three consecutive patients were studied, with a spectrum of burn and inhalation injury severity. Visible soot at initial bronchoscopy and gram negative bacteria in the lower respiratory tract were associated with ALI in univariate analyses. Subsequent multivariate analysis also controlled for % body surface area burns, infection, and inhalation severity. Elevated IL-10 and reduced IL-12p70 in bronchial washings were statistically significantly associated with ALI. CONCLUSIONS: Independently of several factors including initial inhalational injury severity, infection, and extent of surface burns, high early levels of IL-10 and low levels of IL-12p70 in the central airways are associated with ALI in patients intubated after acute burn/inhalation injury. Lower airway secretions can be collected serially in critically ill burn/inhalation injury patients and may yield important clues to specific pathophysiologic pathways.


Assuntos
Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Broncoscopia/métodos , Inflamação/patologia , Lesão por Inalação de Fumaça/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/microbiologia , Citocinas/análise , Ensaio de Imunoadsorção Enzimática , Bactérias Gram-Negativas/isolamento & purificação , Humanos , North Carolina , Estudos Prospectivos , Lesão por Inalação de Fumaça/microbiologia
19.
Shock ; 38(5): 532-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042190

RESUMO

The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sublethal ionization radiation exposure combined with a full-thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a full-thickness contact burn of 20% total body surface area or sham procedure followed by a single whole-body dose of 5-Gy radiation. Serum, spleen, and peripheral lymph nodes were harvested at 3 and 14 days after injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated proinflammatory and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but were significantly elevated after burn alone and RCI at 14 days after injury. In contrast to the T-cell-suppressive nature of myeloid-derived suppressor cells found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in interferon γ and a decrease in interleukin 10. This is consistent with previous work in burn injury indicating that a myeloid-derived suppressor cell-like population increases innate immunity. Radiation combined injury results in the increase in distinct populations of Gr-1CD11b cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host.


Assuntos
Queimaduras/imunologia , Raios gama/efeitos adversos , Células Mieloides/imunologia , Lesões Experimentais por Radiação/imunologia , Animais , Queimaduras/sangue , Queimaduras/patologia , Citocinas/sangue , Citocinas/imunologia , Feminino , Citometria de Fluxo , Leucopenia/sangue , Leucopenia/etiologia , Leucopenia/imunologia , Leucopenia/patologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Armas Nucleares , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
20.
J Trauma ; 64(4): 1069-77; discussion 1077-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18404077

RESUMO

BACKGROUND: Toll-like receptors (TLR) 2 and TLR4 expressed on innate immune cells are important mediators of the immune response to pathogens. In this study, we hypothesized that burn injury results in altered cytokine secretion profiles after TLR2 or TLR4 ligation that is associated with altered TLR expression on innate immune cells. METHODS: Female C56BL/6 mice were subjected to 20% full thickness burn or sham injury. Three or 14 days after injury whole splenocytes or purified splenic macrophages were cultured with TLR2 ligand peptidoglycan or TLR4 ligand lipopolysaccharide. Supernatants were assayed for TNF-alpha, MCP-1, IL-6 and IL-10. Cell death was assessed using flow cytometry. Innate CD11b F4/80 macrophages were sorted 14 days after burn injury and TLR2 and 4 expression was determined by quantitative reverse-transcriptase polymerase chain reaction and flow cytometry. RESULTS: Burn injury results in a steady accumulation in the periphery of CD11bF4/80 macrophages. Macrophages purified early after burn injury upregulated TLR2 and 4, followed by a decrease of TLR2 and TLR4 expression late after burn injury. TLR2 and TLR4 ligation of an equivalent number of purified macrophages 3 days after burn injury revealed no significant differences in cytokine secretion compared with sham. Stimulation 14 days after burn injury revealed a significant reduction in tumor necrosis factor-alpha secretion by macrophages compared with sham mice. In contrast, interleukin-10 was significantly increased (mean, approximately 1.8-fold) late after burn injury after either TLR2 or TLR4 stimulation. Interleukin-6 and monocyte chemotactic protein-1 secretion was unchanged from sham levels. In contrast, whole splenocyte stimulation resulted in increased cytokine 3 days and 14 days after burn injury. This effect is likely caused by the accumulation of TLR macrophages, which are resistant to TLR-induced cell death. CONCLUSIONS: Cytokine secretion profiles after TLR2 and TLR4 ligation after burn injury are altered in a manner not clearly reflective of an anti-inflammatory or proinflammatory state and are associated with unique changes in the macrophage population. TLR2 and TLR4 ligation have complex and varied roles in mediating the immune response to burn injury.


Assuntos
Queimaduras/imunologia , Citocinas/metabolismo , Imunidade Inata/fisiologia , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Animais , Queimaduras/fisiopatologia , Morte Celular , Células Cultivadas , Citocinas/análise , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Baço/citologia , Fatores de Tempo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA