Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Elife ; 122023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261432

RESUMO

Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-ß/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR-dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-ß driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-ß response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.


Assuntos
Fibrose Pulmonar Idiopática , Fatores de Transcrição , Camundongos , Animais , Humanos , Proliferação de Células , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Homeodomínio/genética , Proteína Fosfatase 2C
3.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080573

RESUMO

Several reports have highlighted a potential role of autoreactive B-cells and autoantibodies that correlates with increased disease severity in patients with idiopathic pulmonary fibrosis (IPF). Here we show that patients with IPF have an altered B-cell phenotype and that those subjects who have autoantibodies against the intermediate filament protein periplakin (PPL) have a significantly worse outcome in terms of progression-free survival. Using a mouse model of lung fibrosis, we demonstrate that introducing antibodies targeting the endogenous protein PPL (mimicking naturally occurring autoantibodies seen in patients) directly in the lung increases lung injury, inflammation, collagen and fibronectin expression through direct activation of follicular dendritic cells, which in turn activates and drives proliferation of fibroblasts. This fibrocyte population was also observed in fibrotic foci of patients with IPF and was increased in peripheral blood of IPF patients compared to aged-matched controls. This study reiterates the complex and heterogeneous nature of IPF, identifying new pathways that may prove suitable for therapeutic intervention.


Assuntos
Autoanticorpos , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/metabolismo , Progressão da Doença , Fibroblastos/metabolismo
4.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37077558

RESUMO

In this review, the Basic and Translational Science Assembly of the European Respiratory Society provides an overview of the 2022 International Congress highlights. We discuss the consequences of respiratory events from birth until old age regarding climate change related alterations in air quality due to pollution caused by increased ozone, pollen, wildfires and fuel combustion as well as the increasing presence of microplastic and microfibres. Early life events such as the effect of hyperoxia in the context of bronchopulmonary dysplasia and crucial effects of the intrauterine environment in the context of pre-eclampsia were discussed. The Human Lung Cell Atlas (HLCA) was put forward as a new point of reference for healthy human lungs. The combination of single-cell RNA sequencing and spatial data in the HLCA has enabled the discovery of new cell types/states and niches, and served as a platform that facilitates further investigation of mechanistic perturbations. The role of cell death modalities in regulating the onset and progression of chronic lung diseases and its potential as a therapeutic target was also discussed. Translational studies identified novel therapeutic targets and immunoregulatory mechanisms in asthma. Lastly, it was highlighted that the choice of regenerative therapy depends on disease severity, ranging from transplantation to cell therapies and regenerative pharmacology.

5.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L737-L746, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976924

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis. Chronic microinjuries, mainly caused by environmental factors to an aging alveolar epithelium, would lead to the aberrant differentiation and accumulation of aberrant mesenchymal cells with a contractile phenotype, known as fibrosis-associated myofibroblasts, which trigger abnormal extracellular matrix accumulation and fibrosis. The origin of those pathological myofibroblasts in pulmonary fibrosis is not fully understood to date. Lineage tracing methods using mouse models have opened new avenues for studying cell fate in a pathological context. This review aims to present a nonexhaustive list of different potential sources of those harmful myofibroblasts during lung fibrosis, based on these in vivo approaches, and considering the normal and fibrotic lung cellular atlas recently established by single-cell RNA sequencing.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Camundongos , Animais , Miofibroblastos/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose , Doenças Pulmonares Intersticiais/patologia , Análise de Sequência de RNA , Pulmão/patologia , Fibroblastos/patologia
8.
Am J Respir Cell Mol Biol ; 67(2): 173-187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35549849

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited therapeutic possibilities. FGF19 (fibroblast growth factor 19), an endocrine FGF, was recently shown to decrease liver fibrosis. To ask whether FGF19 had antifibrotic properties in the lung and decipher its effects on common features associated with lung fibrogenesis, we assessed, by ELISA, FGF19 concentrations in plasma and BAL fluids obtained from control subjects and patients with IPF. In vivo, using an intravenously administered adeno11-associated virus, we overexpressed FGF19 at the fibrotic phase of two experimental models of murine lung fibrosis and assessed its effect on lung morphology, lung collagen content, fibrosis markers, and profibrotic mediator expression at mRNA and protein levels. In vitro, we investigated whether FGF19 could modulate the TGF-ß-induced differentiation of primary human lung fibroblasts into myofibroblasts and the apoptosis of murine alveolar type II cells. Although FGF19 was not detected in BAL fluid, FGF19 concentration was decreased in the plasma of patients with IPF compared with control subjects. In vivo, the overexpression of FGF19 was associated with a marked decrease of lung fibrosis and fibrosis markers, with a decrease of profibrotic mediator expression and lung collagen content. In vitro, FGF19 decreased alveolar type 2 epithelial cell apoptosis through the decrease of the proapoptotic BIM protein expression and prevented TGF-ß-induced myofibroblast differentiation through the inhibition of JNK phosphorylation. Altogether, these data identify FGF19 as an antifibrotic molecule with potential therapeutic interest in fibrotic lung disorders.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Colágeno/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Eur Respir Rev ; 29(158)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33208483

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterised by an important remodelling of lung parenchyma. Current evidence indicates that the disease is triggered by alveolar epithelium activation following chronic lung injury, resulting in alveolar epithelial type 2 cell hyperplasia and bronchiolisation of alveoli. Signals are then delivered to fibroblasts that undergo differentiation into myofibroblasts. These changes in lung architecture require the activation of developmental pathways that are important regulators of cell transformation, growth and migration. Among others, aberrant expression of profibrotic Wnt-ß-catenin, transforming growth factor-ß and Sonic hedgehog pathways in IPF fibroblasts has been assessed. In the present review, we will discuss the transcriptional integration of these different pathways during IPF as compared with lung early ontogeny. We will challenge the hypothesis that aberrant transcriptional integration of these pathways might be under the control of a chaotic dynamic, meaning that a small change in baseline conditions could be sufficient to trigger fibrosis rather than repair in a chronically injured lung. Finally, we will discuss some potential opportunities for treatment, either by suppressing deleterious mechanisms or by enhancing the expression of pathways involved in lung repair. Whether developmental mechanisms are involved in repair processes induced by stem cell therapy will also be discussed.


Assuntos
Proteínas Hedgehog , Fibrose Pulmonar Idiopática , Humanos , Miofibroblastos , Transdução de Sinais , Fator de Crescimento Transformador beta
10.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184320

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterised by myofibroblast proliferation and abnormal extracellular matrix accumulation in the lungs. Transforming growth factor (TGF)-ß1 initiates key profibrotic signalling involving the SMAD pathway and the small heat shock protein B5 (HSPB5). Tripartite motif-containing 33 (TRIM33) has been reported to negatively regulate TGF-ß/SMAD signalling, but its role in fibrogenesis remains unknown. The objective of this study was to elucidate the role of TRIM33 in IPF. METHODS: TRIM33 expression was assessed in the lungs of IPF patients and rodent fibrosis models. Bone marrow-derived macrophages (BMDM), primary lung fibroblasts and 3D lung tissue slices were isolated from Trim33-floxed mice and cultured with TGF-ß1 or bleomycin (BLM). Trim33 expression was then suppressed by adenovirus Cre recombinase (AdCre). Pulmonary fibrosis was evaluated in haematopoietic-specific Trim33 knockout mice and in Trim33-floxed mice that received AdCre and BLM intratracheally. RESULTS: TRIM33 was overexpressed in alveolar macrophages and fibroblasts in IPF patients and rodent fibrotic lungs. Trim33 inhibition in BMDM increased TGF-ß1 secretion upon BLM treatment. Haematopoietic-specific Trim33 knockout sensitised mice to BLM-induced fibrosis. In primary lung fibroblasts and 3D lung tissue slices, Trim33 deficiency increased expression of genes downstream of TGF-ß1. In mice, AdCre-Trim33 inhibition worsened BLM-induced fibrosis. In vitro, HSPB5 was able to bind directly to TRIM33, thereby diminishing its protein level and TRIM33/SMAD4 interaction. CONCLUSION: Our results demonstrate a key role of TRIM33 as a negative regulator of lung fibrosis. Since TRIM33 directly associates with HSPB5, which impairs its activity, inhibitors of TRIM33/HSPB5 interaction may be of interest in the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibroblastos , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fatores de Transcrição
11.
Respir Med ; 135: 15-21, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29414448

RESUMO

BACKGROUND: Autoantibodies against lung epithelial antigens are often detected in patients with Idiopathic Pulmonary Fibrosis (IPF). Anti-Parietal Cell Antibodies (APCA) target the H+/K+ATPase (proton pump). APCA prevalence and lung H+/K+ATPase expression was never studied in IPF patients. METHODS: We retrospectively collected clinical, lung function and imaging data from APCA positive patients (APCA+IPF) and compared them with APCA negative IPF patients matched on the date of diagnostic assessment. H+/K+ATPase expression was assessed with immunohistochemistry and PCR. RESULTS: Among 138 IPF patients diagnosed between 2007 and 2014 and tested for APCA, 19 (13.7%) APCA+ patients were identified. APCA+IPF patients were 16 men and 3 women, mean age 71 years. The median titer of APCA was 1:160. A pernicious anemia was present in 5 patients and preceded the fibrosis in 3 cases. With a mean follow up of 31 months, 2 patients had an exacerbation and 7 patients died. As compared with 19 APCA- IPF patients, APCA+IPF patients had a less severe disease with better DLCO (57% vs 43% predicted), preserved PaO2 (85 ± 8 mmHg vs 74 ± 11 mmHg), a lower rate of honeycombing on HRCT (58% vs 89%), but they experienced an accelerated decline of FVC (difference 61.4 ml/year; p = .0002). The H+/K+ATPase was strongly expressed by hyperplastic alveolar epithelial cells in the fibrotic lung. CONCLUSION: Anti-parietal cell autoimmunity is detected in some IPF patients and is associated with an accelerated decline of lung function. Anti-parietal cell autoimmunity may promote lung fibrosis progression.


Assuntos
Autoimunidade/imunologia , Fibrose Pulmonar Idiopática/imunologia , Pulmão/imunologia , Células Parietais Gástricas/imunologia , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/imunologia , Gasometria/tendências , Progressão da Doença , Feminino , Seguimentos , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Células Parietais Gástricas/metabolismo , Bombas de Próton/metabolismo , Testes de Função Respiratória/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Capacidade Vital/fisiologia
12.
ACS Nano ; 12(2): 1188-1202, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29357226

RESUMO

Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-ß release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/química , Mitocôndrias/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Prata/farmacologia , Tretinoína/farmacologia , Animais , Antivirais/química , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Mitocôndrias/metabolismo , Prata/química , Tretinoína/química
13.
FASEB J ; 32(3): 1250-1264, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29122847

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by the deposition of excessive extracellular matrix and the destruction of lung parenchyma, resulting from an aberrant wound-healing response. Although IPF is often associated with an imbalance in protease activity, the mechanisms underlying the sustained repair mechanisms are not fully understood. Here, we addressed the role of the recently identified, membrane-anchored serine protease human airway trypsin-like protease (HAT). In the present study, we show that both HAT expression and activity were up-regulated in human IPF specimens. Next, adenoviral overexpression of HAT before bleomycin challenge attenuated lung injury as well as extracellular matrix deposition in the bleomycin-induced pulmonary fibrosis model. In vitro, HAT prevented specific fibrosis-associated responses in primary human pulmonary fibroblasts and induced the expression of mediators associated with the prostaglandin E2 pathway. Altogether, our findings suggested that HAT could have a protective role in IPF and other fibrotic lung disorders.-Menou, A., Flajolet, P., Duitmen, J., Justet, A., Moog, S., Jaillet, M., Tabèze, L., Solhonne, B., Garnier, M., Mal, H., Mordant, P., Castier, Y., Cazes, A., Sallenave, J.-M., Mailleux, A. A., Crestani, B. Human airway trypsin-like protease exerts potent, antifibrotic action in pulmonary fibrosis.


Assuntos
Lesão Pulmonar/prevenção & controle , Fibrose Pulmonar/prevenção & controle , Serina Endopeptidases/administração & dosagem , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/patologia , Serina Endopeptidases/metabolismo , Transdução de Sinais
14.
Cell Cycle ; 16(21): 2108-2118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933587

RESUMO

It has become more and more evident that the BCL-2 family proteins mediate a wide range of non-apoptotic functions. The pro-apoptotic BAX protein has been reported in interphasic nuclei. Whether the nuclear form of BAX could be involved in non-apoptotic function is still unknown. Our study showed for the first time that BAX was associated with chromatin in vitro. Next, we used gain and loss of function approaches to decipher the potential role of nuclear BAX in non-apoptotic cells. In vitro, nuclear BAX promoted cell proliferation in lung epithelial cells and primary human lung fibroblasts by modulating CDKN1A expression. Interestingly, BAX occupancy of CDKN1A promoter was specifically enriched close to the transcription-starting site. Nuclear BAX also modulated the basal myofibroblastic differentiation and migration of primary human lung fibroblasts. Finally, BAX nuclear localization was associated in vivo with the remodelling of lung parenchyma during development, tumorigenesis as well as fibrosis compared to control adult human lungs. Hence, our study established for the first time, a strong link between the nuclear localization of the pro-apoptotic BAX protein and key basic cellular functions in the non-apoptotic setting.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Interfase , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L781-L795, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729349

RESUMO

Fibroblast growth factor 9 (FGF9) is necessary for fetal lung development and is expressed by epithelium and mesothelium. We evaluated the role of FGF9 overexpression on adenoviral-induced pleural injury in vivo and determined the biological effects of FGF9 on mesothelial cells in vitro. We assessed the expression of FGF9 and FGF receptors by mesothelial cells in both human and mouse lungs. Intrapleural injection of an adenovirus expressing human FGF9 (AdFGF9) or a control adenovirus (AdCont) was performed. Mice were euthanized at days 3, 5, and 14 Expression of FGF9 and markers of inflammation and myofibroblastic differentiation was studied by qPCR and immunohistochemistry. In vitro, rat mesothelial cells were stimulated with FGF9 (20 ng/ml), and we assessed its effect on proliferation, survival, migration, and differentiation. FGF9 was expressed by mesothelial cells in human idiopathic pulmonary fibrosis. FGF receptors, mainly FGFR3, were expressed by mesothelial cells in vivo in humans and mice. AdCont instillation induced diffuse pleural thickening appearing at day 5, maximal at day 14 The altered pleura cells strongly expressed α-smooth muscle actin and collagen. AdFGF9 injection induced maximal FGF9 expression at day 5 that lasted until day 14 FGF9 overexpression prevented pleural thickening, collagen and fibronectin accumulation, and myofibroblastic differentiation of mesothelial cells. In vitro, FGF9 decreased mesothelial cell migration and inhibited the differentiating effect of transforming growth factor-ß1. We conclude that FGF9 has a potential antifibrotic effect on mesothelial cells.


Assuntos
Adenoviridae/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator 9 de Crescimento de Fibroblastos/farmacologia , Fibrose Pulmonar Idiopática/virologia , Pulmão/patologia , Animais , Diferenciação Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Epitélio/patologia , Epitélio/virologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/virologia , Camundongos Endogâmicos C57BL , Pleura/efeitos dos fármacos , Ratos
17.
Am J Physiol Lung Cell Mol Physiol ; 310(7): L615-29, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26773067

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor ß1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo.


Assuntos
Fator 9 de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Miofibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Idoso , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática , Pulmão/metabolismo , Pulmão/patologia , Pessoa de Meia-Idade
18.
Am J Physiol Lung Cell Mol Physiol ; 307(11): L838-47, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260753

RESUMO

Aberrant expression of master phenotype regulators or alterations in their downstream pathways in lung fibroblasts may play a central role in idiopathic pulmonary fibrosis (IPF). Interrogating IPF fibroblast transcriptome datasets, we identified Forkhead Box F1 (FOXF1), a DNA-binding protein required for lung development, as a candidate actor in IPF. Thus we determined FOXF1 expression levels in fibroblasts cultured from normal or IPF lungs in vitro, and explored FOXF1 functions in these cells using transient and stable loss-of-function and gain-of-function models. FOXF1 mRNA and protein were expressed at higher levels in IPF fibroblasts compared with normal fibroblasts (mRNA: +44%, protein: +77%). Immunohistochemistry showed FOXF1 expression in nuclei of bronchial smooth muscle cells, endothelial cells, and lung fibroblasts including fibroblastic foci of IPF lungs. In normal lung fibroblasts, FOXF1 repressed cell growth and expression of collagen-1 (COL1) and actin-related protein 2/3 complex, subunit 2 (ARPC2). ARPC2 knockdown inhibited cell growth and COL1 expression, consistent with FOXF1 acting in part through ARPC2 repression. In IPF fibroblasts, COL1 and ARPC2 repression by FOXF1 was blunted, and FOXF1 did not repress growth. FOXF1 expression was induced by the antifibrotic mediator prostaglandin E2 and repressed by the profibrotic cytokine transforming growth factor-ß1 in both normal and IPF lung fibroblasts. Ex vivo, FOXF1 knockdown conferred CCL-210 lung fibroblasts the ability to implant in uninjured mouse lungs. In conclusion, FOXF1 functions and regulation were consistent with participation in antifibrotic pathways. Alterations of pathways downstream of FOXF1 may participate to fibrogenesis in IPF fibroblasts.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/biossíntese , Colágeno Tipo I/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Fibrose Pulmonar Idiopática/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Apoptose , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Dinoprostona/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/transplante , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
19.
Am J Respir Cell Mol Biol ; 51(1): 11-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24450438

RESUMO

Idiopathic pulmonary fibrosis has been associated with the reactivation of developmental pathways, notably the Hedgehog-Glioma-associated oncogene homolog (GLI) pathway. In this study, we determined whether the Hedgehog pathway was activated in bleomycin-induced lung injury in mice, and whether targeting the Hedgehog-Gli pathway could decrease bleomycin-induced lung fibrosis. After intratracheal injection of bleomycin on Day 0, C57Bl6 mice received GDC-0449 (an inhibitor of Smoothened, the transducer of the pathway), or 2,2'-[[Dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N dimethylbenzenamine (GANT61; an inhibitor of GLI transcription factors in the nucleus), from Day 7 to Day 13. At Day 14, whole-lung homogenates were obtained for morphological analysis, assessment of cell apoptosis and proliferation, collagen quantification, and evaluation of profibrotic (transforming growth factor-ß, connective tissue growth factor, plasminogen activator inhibitor 1, vascular endothelial growth factor-A) and proinflammatory mediators (IL-1ß) expression. We showed that the Hedgehog pathway was activated in bleomycin-induced lung fibrosis on Day 14 after injury, with an increased lung expression of the ligand, Sonic Hedgehog, and with increased messenger RNA expression and nuclear localization of GLI1 and GLI2. Inhibition of Smoothened with GDC-0449 did not influence the development of bleomycin-induced lung fibrosis. By contrast, the inhibition of GLI activity with GANT61 decreased lung fibrosis and lung collagen accumulation, and promoted an antifibrotic and anti-inflammatory environment. Our results identify the hedgehog-Gli pathway as a profibrotic pathway in experimental fibrosis. Inhibition of the Hedgehog-Gli pathway at the level of GLI transcriptional activity could be a therapeutic option in fibrotic lung diseases.


Assuntos
Anilidas/farmacologia , Bleomicina/toxicidade , Glioma/tratamento farmacológico , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fibrose Pulmonar/prevenção & controle , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Colágeno/genética , Colágeno/metabolismo , Imunofluorescência , Glioma/metabolismo , Glioma/patologia , Técnicas Imunoenzimáticas , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Smoothened , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA