Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Medicina (Ribeirao Preto, Online) ; 56(4)dez. 2023. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1538188

RESUMO

Background: This study evaluated the effects of zein nanoparticles with resveratrol on neuroinflammation caused by Alzheimer's disease. Method: The sample consisted of 30 animals divided into control (C), positive control (CP), white nanoparticles (NB), resveratrol nanoparticles (NR) and resveratrol (R) groups. The animals received 10 mg/kg of resveratrol or nanoparticles according to the group, daily, for 15 days, oral administration. Afterward, they were submitted to immunohistochemical (IHC) analyses. Results: the IHC showed that there was no change in the morphological brain composition in the NR and C groups. Conversely, in the CP, NB, and R groups, changes in the deposition of Anti Tau were observed. The NR group showed a normal projection of taurine in the axon, which was not presented in the same way in the other groups. The CD68 marker showed no microglial activation in the R and C groups. Quantitative analyses of Anti Beta-Amyloid in the NR group showed a statistical difference com-pared to the CP, NB, and R groups, whereas the Anti Tau analysis showed a significant difference between the CP and NR groups. The CD68 marker showed a significant difference between the C and NR groups. The analysis of cy-tokines showed a significant difference in TNF-α between the C and CP groups, C and NB groups, CP and NR groups, and NB and NR groups. IL-6 and InF-δ showed no significant difference between all groups. IL-10 showed significant differences between the C and NR groups, C and R groups, and CP and NR groups. Conclusion: NR prevented the evolution of neuroinflammation(AU).


Introdução: Este estudo avaliou os efeitos das nanopartículas de zeína com resveratrol na neuroinflamação causada pela doença de Alzheimer. Método: A amostra consistiu em 30 animais divididos em grupos de controle (C), controle positivo (CP), nanopartículas brancas (NB), nanopartículas de resveratrol (NR) e resveratrol (R). Os animais receberam 10 mg/kg de resveratrol ou nanopartículas de acordo com o grupo, diariamente, por 15 dias, por via oral. Em seguida, foram submetidos a análises imuno-histoquímicas (IHC). Resultados: A IHC mostrou que não houve alteração na composição morfológica do cérebro nos grupos NR e C. Por outro lado, nos grupos CP, NB e R, foram observadas alterações na deposição de Anti Tau. O grupo NR mostrou uma projeção normal de taurina no axônio, que não se apresentou da mesma forma nos outros grupos. O marcador CD68 não mostrou ativação microglial nos grupos R e C. As análises quantitativas do antibeta-amiloide no grupo NR mostraram uma diferença estatística quando comparadas aos grupos CP, NB e R, enquanto a análise do antitau mostrou uma diferença significativa entre os grupos CP e NR. O marcador CD68 mostrou uma diferença significativa entre os grupos C e NR. A análise das citocinas mostrou uma diferença significativa no TNF-α entre os grupos C e CP, C e NB, CP e NR, e NB e NR. IL-6 e InF-δ não apresentaram diferença significativa entre todos os grupos. A IL-10 apresentou diferenças significativas entre os grupos C e NR, C e R, e CP e NR. Conclusão: A NR impediu a evolução da neuroinflamação (AU).


Assuntos
Animais , Nanopartículas , Doença de Alzheimer , Resveratrol
2.
Pharmaceutics ; 15(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38139990

RESUMO

Silybin (SLB), an important flavonoid from silymarin, displays significant hepatoprotective, anticancer, antioxidant, and neuroprotective effects. However, its therapeutic efficacy is limited by its low solubility and bioavailability. To address these challenges, we engineered bovine serum albumin (BSA) nanoparticles (NP) loaded with SLB (BSA-NP/SLB) using the coacervation method. BSA-SLB NP exhibited a spherical shape, a mean size of 197 nm, a polydispersity index of 0.275, a zeta potential of -34 mV, and an entrapment efficiency of 67%. X-ray diffraction analysis indicated amorphization of SLB upon encapsulation. Formulation stability was upheld over 180 days. In vitro release assays demonstrated controlled diffusion-erosion release, with approximately 40% SLB released within 0.5 h and 100% over 12 h. Intranasal administration of BSA-NP/SLB in rats improved SLB bioavailability by fourfold compared to free SLB. These findings highlight the promising potential of intranasally administered BSA-NP/SLB as an alternative approach to enhance SLB bioavailability, paving the way for innovative therapeutic applications.

3.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630970

RESUMO

Perillyl alcohol (POH), a bioactive monoterpenoid derived from limonene, shows promise as an antitumor agent for brain tumor treatment. However, its limited oral bioavailability and inadequate brain distribution hinder its efficacy. To address these challenges, this study developed nanostructured lipid carriers (NLCs) loaded with POH to improve its brain biodistribution. The NLCs prepared using hot homogenization exhibited an average diameter of 287 nm and a spherical morphology with a polydispersity index of 0.143. High encapsulation efficiency of 99.68% was achieved. X-ray diffraction analyses confirmed the semicrystalline state of POH-loaded NLCs. In vitro release studies demonstrated a biphasic release profile. Stability studies in simulated gastric and intestinal fluids confirmed their ability to withstand pH variations and digestive enzymes. In vivo pharmacokinetic studies in rats revealed significantly enhanced oral bioavailability of POH when encapsulated in the NLCs. Biodistribution studies showed increased POH concentration in brain tissue with NLCs compared with free POH, which was distributed more in non-target tissues such as the liver, lungs, kidneys, and spleen. These findings underscore the potential of NLCs as effective delivery systems for enhancing oral bioavailability and brain biodistribution of POH, providing a potential therapeutic strategy for brain tumor treatment.

4.
Braz. J. Pharm. Sci. (Online) ; 59: e23068, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505851

RESUMO

Abstract Bovine infectious mastitis is largely resistant to antibacterial treatment, mainly due to mechanisms of bacterial resistance in the biofilms formed by Staphylococcus aureus. Melaleuca (MEO) and citronella essential oils (CEO) are promising agents for reducing or eliminating biofilms. Free melaleuca oil presented a medium Minimum Inhibitory Concentration (MIC) of 0.625% and a Minimum Bactericidal Concentration (MBC) of 1.250%, while free citronella oil showed medium MIC and MBC of 0.313%. Thus, free CEO and MEO demonstrate bacteriostatic and bactericidal potential. We generated polymeric nanocapsules containing MEO or CEO and evaluated their efficacy at reducing biofilms formed by S. aureus. Glass and polypropylene spheres were used as test surfaces. To compare the responses of free and encapsulated oils, strains were submitted to 10 different procedures, using free and nanoencapsulated essential oils (EOs) in vitro. We observed no biofilm reduction by MEO, free or nanoencapsulated. However, CEO nanocapsules reduced biofilm formation on glass (p=0.03) and showed a tendency to diminish biofilms on polypropylene (p=0.051). Despite nanoencapsulated CEO reducing biofilms in vitro, the formulation could be improved to modify the CEO component polarity and, including MEO, to obtain more interactions with surfaces and the biofilm matrix


Assuntos
Staphylococcus aureus/isolamento & purificação , Óleos Voláteis/análise , Biofilmes/classificação , Nanocápsulas/efeitos adversos , Mastite Bovina/patologia , Técnicas In Vitro/métodos , Melaleuca/efeitos adversos , Cymbopogon/efeitos adversos
5.
Food Technol Biotechnol ; 60(2): 145-154, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910271

RESUMO

Research background: Gallic acid is a polyphenol with antioxidant and antitumor activities; however, its use as a nutraceutical or drug is hindered by its low bioavailability. Zein is a natural protein found in corn and has been applied as nanoparticle drug carrier. In this study, zein nanoparticles were obtained and stabilized with polyethylene glycol (PEG) as gallic acid carriers. Experimental approach: Nanoparticles were obtained by the liquid-liquid method and characterized in terms of mean size, polydispersity index, zeta potential, morphology, solid-state interactions and encapsulation efficiency/drug loading. The stability of nanoparticles was evaluated in simulated gastrointestinal fluids and food simulants, and the antioxidant activity was determined by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Results and conclusions: Zein nanoparticles containing gallic acid were obtained and stabilized only in the presence of PEG. Under optimal conditions, nanoparticles with mean size <200 nm, low polydispersity index (<0.25) and negative zeta potential (-20 mV) were obtained. The gallic acid encapsulation efficiency was about 40%, loading about 5%, and it was encapsulated in an amorphous state. Fourier transform infrared spectroscopy (FTIR) did not identify chemical interactions after gallic acid nanoencapsulation. Zein nanoparticles were more prone to release the gallic acid in gastric than intestinal simulated medium; however, more than 50% of drug content was protected from premature release. In food simulants, the gallic acid release from nanoparticles was prolonged and sustained. Moreover, the nanoencapsulation did not reduce the antioxidant activity of gallic acid. Novelty and scientific contribution: The results show the importance of PEG in the formation and its effect on the properties of zein nanoparticles obtained by the liquid-liquid dispersion method. This study indicates that PEG-stabilized zein nanoparticles are potential carriers for oral intake of gallic acid, preserving its antioxidant properties and enabling its use in the pharmaceutical and food industries.

6.
Colloids Surf B Biointerfaces ; 203: 111720, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33819820

RESUMO

The skin aging process in women is accelerated due to decreases in serum estrogen levels triggered by the menopause process. Hence, poly(L-lactic acid) lipid-core nanocapsules containing ursolic acid (NPLA-UA) were developed using the interfacial deposition of the preformed polymer methodology as a strategy to reduce damages to the healing process caused by hormonal deficiency in ovariectomized rats. The colloidal suspensions of nanocapsules presented adequate size and morphology (254 and 375 nm), negative zeta potential (-31 and -37 mV), high encapsulation efficiency (99.89 %), and amorphous character. The analyses performed in an in vivo healing trial showed that the treatment with NPLA-UA resulted in faster wound retraction with less inflammatory response. In addition, the angiogenic process was stimulated increased synthesis of dermal collagen occurred. Ursolic acid-loaded, lipid-core nanocapsules are suitable for treating skin changes triggered by decreased estrogen in menopause.


Assuntos
Nanocápsulas , Animais , Estrogênios , Lipídeos , Ratos , Triterpenos , Cicatrização , Ácido Ursólico
7.
Int J Biol Macromol ; 172: 133-142, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450338

RESUMO

Ursolic acid (UA) is a naturally occurring triterpene that has been investigated for its antitumor activity. However, its lipophilic character hinders its oral bioavailability, and therapeutic application. To overcome these limitations, chitosan (CS) modified poly (lactic acid) (PLA) nanoparticles containing UA were developed, characterized, and had their oral bioavailability assessed. The nanoparticles were prepared by emulsion-solvent evaporation technique and presented a mean diameter of 330 nm, zeta potential of +28 mV, spherical shape and 90% encapsulation efficiency. The analysis of XRD and DSC demonstrated that the nanoencapsulation process induced to UA amorphization. The in vitro release assay demonstrated that 53% of UA was released by diffusion after 144 h, following a second-order release kinetics. In simulated gastrointestinal fluids and mucin interaction tests, CS played an important role in stability and mucoadhesiveness improvement of PLA nanoparticles, respectively. In the presence of erythrocytes, nanoparticles proved their hemocompatibility. In tumor cells, nanoparticles presented lower cytotoxicity than free UA, due to slow UA release. After a single oral dose in rats, CS modified PLA nanoparticles increased the UA absorption, reduced its clearance and elimination, resulting in increased bioavailability. The results show the potential application of these nanoparticles for UA oral delivery for cancer therapy.


Assuntos
Quitosana/química , Nanopartículas/química , Poliésteres/química , Triterpenos/química , Triterpenos/metabolismo , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Emulsões/química , Eritrócitos/efeitos dos fármacos , Humanos , Masculino , Ratos , Ratos Wistar , Solventes/química , Ácido Ursólico
8.
Biomed Chromatogr ; 35(4): e5037, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33238042

RESUMO

Perillyl alcohol (POH) is a monocyclic terpene that has strong antitumor activity. Brain tumors are particularly difficult to treat with therapeutic agents, and clinical trials have shown their low tolerance through oral administration. We proposed the entrapment of POH into an oil-in-water chitosan nanoemulsion aiming its intranasal administration for brain targeting. An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of total metabolite perillic acid (PA) in plasma and brain of rats. The rat samples containing the metabolite were treated by liquid-liquid extraction with acetonitrile. The mobile phase was 0.1% formic acid in water (solvent A) and 0.1% formic acid in methanol (solvent B), at a flow rate of 0.3 mL min-1 in gradient elution. The chromatography was run for 10 min, and analytical curves were built in acetonitrile, plasma, and brain. The PA was detected in positive ion mode with multiple reaction monitoring. The method has shown high selectivity, sensitivity, and throughput. The low quantification limits of 162, 178, and 121 ng mL-1 for acetonitrile, brain, and plasma, respectively, indicate a good detectability of the method. The repeatability and precision observed were within the limits recommended in the literature. The accuracy of the method was verified through high recovery rates (106-118%). The validated method was successfully applied to the pharmacokinetic study of the metabolite PA after the intranasal administration of free or POH-loaded nanoemulsion in rats. The results showed that chitosan nanoemulsion improved the plasma and brain bioavailability of POH, representing a promising alternative to free POH treatment.


Assuntos
Química Encefálica/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Cicloexenos , Emulsões , Monoterpenos , Administração Intranasal , Animais , Cicloexenos/análise , Cicloexenos/sangue , Cicloexenos/farmacocinética , Emulsões/administração & dosagem , Emulsões/química , Emulsões/farmacocinética , Limite de Detecção , Modelos Lineares , Monoterpenos/administração & dosagem , Monoterpenos/análise , Monoterpenos/sangue , Monoterpenos/química , Monoterpenos/farmacocinética , Nanoestruturas/administração & dosagem , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
Braz. arch. biol. technol ; 64(spe): e21200795, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285573

RESUMO

Abstract Hesperidin is a natural compound which is found in citric fruits and presents antitumor and antimicrobial activities. However, the in vivo efficacy of Hesperidin is reduced due to its low oral bioavailability. Protein-based nanoparticles have been applied to improve biological parameters of drugs and natural compounds. Gliadin is a monomeric protein present in wheat. In this study, gliadin-based nanoparticles containing hesperidin were obtained by desolvation technique and a Taguchi orthogonal array design was employed to optimize the formulation. The independent variables were set as concentration of CaCl2 (0.5; 1 or 2%) and stabilizing agent (Pluronic F68, Tween 80 or sodium caseinate). The dependent variables consisted of mean diameter, polydispersity index, zeta potential, and encapsulation efficiency. The results showed significant effects on the dependent variables when 1% CaCl2 and Pluronic F68 were used. The optimized formulation was coated with chitosan to increase the physical stability of the nanoparticles. The final nanoparticles presented a mean diameter of 321 nm and polydispersity index of 0.217, and spherical shape. After coating, the Zeta potential was +21 mV, and the encapsulation efficiency was 73 %. The in vitro release assay showed that about 98% of the drug was released from the nanoparticles after 48 h. Moreover, the nanoparticles reduced hesperidin cytotoxicity on healthy cells (Vero cells) and improved the cytotoxicity on tumor cells (HeLa, PC-3 and Caco-2 cells). Results showed that the chitosan-coated gliadin nanoparticles are potential carriers for hesperidin delivery for cancer treatment.


Assuntos
Quitosana/química , Gliadina/química , Hesperidina/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas
10.
Braz. J. Pharm. Sci. (Online) ; 56: e17692, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1089179

RESUMO

Rutin is a flavonoid compound obtained from different vegetables and fruits; specifically, it is found in the seeds of buckwheat and in fruit peels, particularly citrus. It is also an important constituent of red wine. Rutin exhibits various biological properties including antiviral, vasoprotective, anti-inflammatory, and anticarcinogenic activities. However, its antioxidant activity is the most well studied. Despite the potential for in vitro applications, rutin presents low oral bioavailability that affects its biological activities. Nanoparticles composed of polymers, protein, or lipids are of great importance in the pharmaceutical and nutraceutical areas due to their physicochemical properties, which improve the pharmacokinetics of the drug which is loaded within. This study presents the production of bovine serum albumin (BSA) nanoparticles containing rutin by nano spray drying. Nanoparticles were characterized in terms of mean particle size, size distribution, morphology, zeta potential, and drug content; as well as their antioxidant activity. The optimized spray-drying conditions produced spherical particles with a mean size of 316 nm, zeta potential of −32 mV, and encapsulation efficiency around 32%. Moreover, when antioxidant activity toward the ABTS+ radical was assayed, nanoencapsulation increased the IC50 of rutin by 2-fold. The nano spray-drying process proved to be suitable for the production of rutin-loaded BSA nanoparticles with potential antioxidant activity.

11.
J Microencapsul ; 35(5): 467-474, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30246573

RESUMO

Curcumin is a natural compound presenting important antitumour activity. However, due to its low aqueous solubility, instability at physiological pH, and low oral bioavailability, its clinical use is limited. Bovine serum albumin (BSA) nanoparticles have been used as drug carriers to improve the drug properties. In this work, curcumin-loaded BSA nanoparticles were developed and the in vitro cytotoxicity over murine melanoma cells and the in vivo antitumour activity in a murine melanoma model were assessed. Nanoparticles presented 150 nm, polydispersity index of 0.16, negative zeta potential, and 45% of curcumin encapsulation efficiency. Curcumin release from nanoparticles was slow and diffusion dependent. In the cytotoxicity assay, free curcumin was more efficient than curcumin-loaded nanoparticles, probably due to the prolonged curcumin release from nanoparticles. However, in a murine melanoma model, curcumin-loaded nanoparticles presented higher antitumour efficiency than free curcumin. BSA nanoparticles are efficient curcumin carriers that may have relevant applications in melanoma treatment.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Melanoma Experimental/tratamento farmacológico , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Bovinos , Linhagem Celular Tumoral , Curcumina/farmacocinética , Curcumina/uso terapêutico , Liberação Controlada de Fármacos , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Artif Cells Nanomed Biotechnol ; 46(sup2): 993-1002, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29842790

RESUMO

This paper describes the development and in vitro evaluation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with chitosan (CS) for oral delivery of ferulic acid (FA). Nanoparticles were obtained by an emulsion evaporation technique and characterized. Furthermore, we evaluated the scavenging activity over hypochlorous acid (HOCl), the cytotoxicity over tumour cells and the in vitro intestinal permeability. Nanoparticles were spherical with a mean diameter of 242 nm, positive zeta potential and 50% of encapsulation efficiency. The in vitro release in phosphate buffered saline (PBS) (pH 7.4) demonstrated a prolonged and biphasic profile diffusion-controlled. In simulated gastrointestinal fluids, about 15% of FA was released in gastric fluid and a negligible release was observed in the intestinal fluid. In the HOCl scavenging activity and cytotoxicity over B16-F10 and HeLa cells, FA-loaded nanoparticles presented the same efficacy of the free drug. Besides, in the antioxidant and cytotoxic assay, CS contributed to FA effects. In the intestinal permeability study, FA-loaded nanoparticles exhibited a permeation of 6% through the Caco-2 monolayer and 20% through the Caco-2/HT29-MTX/Raji B co-culture. CS-coated PLGA nanoparticles are promising carriers for oral delivery of FA.


Assuntos
Quitosana/química , Ácidos Cumáricos/administração & dosagem , Ácidos Cumáricos/química , Portadores de Fármacos/química , Mucosa Intestinal/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Adesividade , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Ácidos Cumáricos/farmacologia , Liberação Controlada de Fármacos , Células HT29 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Ácido Hipocloroso/química , Mucosa Intestinal/metabolismo , Melanoma Experimental/patologia , Camundongos , Permeabilidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo
13.
J Pharm Anal ; 7(2): 129-133, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29404028

RESUMO

In this study, we developed and validated a fast, specific, sensitive, precise and stability-indicating high performance liquid chromatography (HPLC) method to determine the drug apocynin in bovine serum albumin (BSA) nanoparticles. Chromatographic analyses were performed on an RP C18 column and using a photodiode array detector at a wavelength of 276 nm. Mobile phase consisted of a mixture of acetonitrile and 1% acetic acid (60:40, v/v), and it was eluted isocratically at a flow rate of 0.8 mL/min. The retention time of apocynin chromatographic peak was 1.65 min. The method was linear, precise, accurate and specific in the range of 5-100 µg/mL. The intra- and inter-day precisions presented relative standard deviation (RSD) values lower than 2%. The method was robust regarding changes in mobile phase proportion, but not for flow rate. Limits of detection and quantitation were 78 ng/mL and 238 ng/mL, respectively. Apocynin was exposed to acid and alkali hydrolysis, oxidation and visible light. The drug suffered mild degradation under acid and oxidation conditions and great degradation under alkali conditions. Light exposure did not degrade the drug. The method was successfully applied to determine the encapsulation efficiency of apocynin in BSA nanoparticles.

14.
J Pharm Anal ; 7(6): 388-393, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29404064

RESUMO

Melatonin is a natural hormone and with the advancement of age its production declines and thereby may result in some neurological disorders. Exogenous administration of melatonin has been suggested as a neuroprotective agent. Due to its low oral bioavailability, the loading of melatonin in polymeric nanoparticles could be an important tool to effectively use exogenous melatonin. The quantification of the incorporated drug within polymeric nanoparticles is an important step in nanoparticles characterization. An analytical method using high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) was developed and validated for melatonin determination in poly (lactic acid) nanoparticles obtained by a single emulsion-solvent evaporation technique. The melatonin in vitro release profile also was determined by the HPLC method. Mobile phase consisted of acetonitrile: water (65:35, v/v) pumped at a flow rate of 0.9 mL/min, in the isocratic mode and PDA detector was set at 220 nm. The method was validated in terms of the selectivity, linearity, precision, accuracy, robustness, limits of detection and quantification. Analytical curve was linear over the concentration range of 10-100 µg/mL, and limits of detection and quantification were 25.9 ng/mL and 78.7 ng/mL, respectively. The mean recovery for melatonin was 100.47% (RSD = 1.25%, n = 9). In the intra- and inter-assay, the coefficient of variation was less than 2%. Robustness was proved performing changes in mobile phase, column temperature and flow rate. The method was suitable for the determination of melatonin encapsulation efficiency in poly(lactic acid) nanoparticles and for the evaluation of melatonin in vitro release profile.

15.
Mater Sci Eng C Mater Biol Appl ; 71: 156-166, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987693

RESUMO

The purpose of this study was to develop poly(lactic acid) (PLA) nanoparticles containing ursolic acid (UA) by an emulsification-solvent evaporation technique and evaluate the radical scavenging activity over hypochlorous acid (HOCl) and cytotoxicity over erythrocytes and tumor cells. Nanoparticles were successfully obtained and presented mean size of 246nm with spherical or slightly oval morphology, negative zeta potential and 96% of UA encapsulation efficiency. Analyses of FTIR, XRD and DSC-DTG suggest interaction/complexation of UA with PLA matrix and drug amorphization promoted by nanoencapsulation process. Stability study showed that room temperature was the best condition for nanoparticles storage. The in vitro release study showed UA was released from the polymeric matrix over two constants (α, ß), suggesting a second order kinetics. After 120h of assay, 60% of UA were released by diffusion. In the HOCl scavenging activity, after 72h of assay UA-loaded nanoparticles presented the same efficacy of free drug. In cytotoxicity test over red blood cells, UA-loaded nanoparticles showed less toxicity on cells than free drug. The cytotoxicity assay over melanoma cells line (B16-F10) showed after 72h that nanoparticles were able to reduce the cell viability in 70%. PLA nanoparticles showed be potential carriers for UA maintaining the antioxidant and antitumor activity of the UA and decreasing its cytotoxicity over normal cells.


Assuntos
Antineoplásicos , Citotoxinas , Sequestradores de Radicais Livres , Nanopartículas/química , Poliésteres , Triterpenos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Humanos , Camundongos , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Triterpenos/química , Triterpenos/farmacocinética , Triterpenos/farmacologia , Ácido Ursólico
16.
Braz. J. Pharm. Sci. (Online) ; 53(2): e16138, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839490

RESUMO

ABSTRACT The development and validation of a simple and efficient method for the quantification of ferulic acid in poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan (CS) by reverse phase high performance liquid chromatography coupled to photodiode array detection was described. For the chromatographic analysis, a reverse phase C-18 column was used, mobile phase consisting of acetonitrile and 0.5% acetic acid (37:63, v/v), isocratically eluted at a flow rate of 1 mL/min. Drug determination was performed at 320 nm. The method was validated in terms of the selectivity, linearity, precision, accuracy, robustness, limits of detection and quantification. The method was linear in the range of 10 to 100 µg/mL (r=0.999) and presented limit of detection and quantification of 102 ng/mL and 310 ng/mL, respectively. The method was precise (intra and inter-day) based on relative standard deviation values (less than 3.20%). The recovery was between 101.06 and 102.10%. Robustness was demonstrated considering change in mobile phase proportion. Specificity assay showed no interference from the components of nanoparticles or from the degradation products derived from acidic and oxidative conditions. The proposed method was suitable to be applied in determining the encapsulation efficiency of ferulic acid in PLGA-CS nanoparticles and can be employed as stability indicating one.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Quitosana/farmacologia , Nanopartículas/classificação , Ácidos Cumáricos/farmacologia , Estudo de Validação , Antioxidantes/classificação
17.
J Nanosci Nanotechnol ; 16(2): 1346-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433585

RESUMO

Quercetin is a flavonoid reported as anti-allergic, anti-inflammatory, antiplatelet, anti-microbial, antioxidant, antineurodegenerative and antitumoral. However, due to its low water solubility, its efficacy is restricted. Nanotechnology can be an importante tool to improve the quercetin properties and increase its bioavailability. In this study, bovine serum albumin (BSA) nanoparticles containing quercetin were developed by desolvation technique, characterized the mean particle size, polydispersity, zeta potential, encapsulation efficiency, physical state of drug in nanoparticles and drug release profile as well as their antioxidant activity was evaluated. The influence of glutaraldehyde percentage in nanoparticles properties was evaluated and did not influence the nanoparticles parameters. Nanoparticles presented a mean size around 130 nm and encapsulation efficiency around 85%. Results from X-ray diffractometry showed that the crystal of the drug was converted to an amorphous state in polymeric matrix. Quercetin release profile demonstrated a biphasic pattern and after 96 h approximately 18% of drug was released. Kinetic models demonstrated that the quercetin release followed a second-order model and the release was governed by Fickian diffusion. After 96 h, quercetin-loaded nanoparticles were more effective than free quercetin for scanvenger of radical ABTS + and hypochlorous acid. BSA nanoparticles represents potential carriers for improve quercetin properties.


Assuntos
Antioxidantes/química , Nanopartículas , Quercetina/química , Soroalbumina Bovina/química , Animais , Bovinos
18.
Colloids Surf B Biointerfaces ; 144: 65-72, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27070053

RESUMO

In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth.


Assuntos
Melanoma Experimental/patologia , Nanocápsulas/química , Estilbenos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nanocápsulas/ultraestrutura , Resveratrol , Carga Tumoral/efeitos dos fármacos , Difração de Raios X
19.
Eur J Pharm Sci ; 84: 83-91, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26775869

RESUMO

Poly(lactic acid) (PLA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) blend nanoparticles were developed loading 5-fluorouracil (5-FU), an antitumor agent broadly used in therapy. A 2(3) factorial experimental design was conducted to indicate an optimal formulation and demonstrate the influence of the interactions of components on the mean particle size and drug encapsulation efficiency. Optimized PLA nanoparticles presented 294nm and 51% of 5-FU encapsulation efficiency and PLA-PEG blend nanoparticles presented 283nm and 55% of 5-FU encapsulation efficiency. In vitro release assay demonstrated after 320h about 50% of 5-FU was released from PLA and PLA-PEG blend nanoparticles. Release kinetics of 5-FU from nanoparticles followed second order and the release mechanism calculated by Korsmeyer-Peppas model was diffusion and erosion. In the assessment of cytotoxicity over Hep-2 tumor cells, PLA or PLA-PEG blend nanoparticles presented similar IC50 value than free 5-FU. Pharmacokinetic parameters after oral administration of 5-FU were improved by nanoencapsulation. Bioavailability, Cmax, Tmax, t1/2 and distribution volume were significantly improved, while clearance were decreased. PEG presence in nanoparticles didn't influence physicochemical and biological parameters evaluated. PLA and PLA-PEG nanoparticles can be potential carriers for oral delivery of 5-FU.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Fluoruracila/administração & dosagem , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/sangue , Antimetabólitos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos/farmacocinética , Fluoruracila/sangue , Fluoruracila/farmacocinética , Humanos , Masculino , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética , Ratos Wistar
20.
Mater Sci Eng C Mater Biol Appl ; 60: 126-134, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706515

RESUMO

Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles.


Assuntos
Antioxidantes/química , Ácido Gálico/química , Ácido Láctico/química , Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA