Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Math Biosci ; 374: 109240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906525

RESUMO

A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the 'go-or-grow' hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells' phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.


Assuntos
Movimento Celular , Matriz Extracelular , Modelos Biológicos , Fenótipo , Matriz Extracelular/fisiologia , Movimento Celular/fisiologia , Humanos , Proliferação de Células/fisiologia
2.
Cell ; 187(13): 3165-3186, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906093

RESUMO

Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.


Assuntos
Padronização Corporal , Animais , Humanos , Desenvolvimento Embrionário , Homeostase , Organoides/metabolismo , Envelhecimento
3.
Cell Syst ; 15(6): 510-525.e6, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772367

RESUMO

Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase inhibitor (PARPi) maintenance therapy of ovarian cancer. We propose that adaptive therapy, which dynamically reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse microscopy and stepwise model selection, we calibrate and validate a differential equation mathematical model, which we leverage to test different plausible adaptive treatment schedules. Our model indicates that adjusting the dosage, rather than skipping treatments, is more effective at reducing drug use while maintaining efficacy due to a delay in cell kill and a diminishing dose-response relationship. In vivo pilot experiments confirm this conclusion. Although our focus is toxicity mitigation, reducing drug use may also delay resistance. This study enhances our understanding of PARPi treatment scheduling and illustrates the first steps in developing adaptive therapies for new treatment settings. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Animais , Resistencia a Medicamentos Antineoplásicos , Camundongos
4.
Cancer Res ; 84(11): 1929-1941, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38569183

RESUMO

Standard-of-care treatment regimens have long been designed for maximal cell killing, yet these strategies often fail when applied to metastatic cancers due to the emergence of drug resistance. Adaptive treatment strategies have been developed as an alternative approach, dynamically adjusting treatment to suppress the growth of treatment-resistant populations and thereby delay, or even prevent, tumor progression. Promising clinical results in prostate cancer indicate the potential to optimize adaptive treatment protocols. Here, we applied deep reinforcement learning (DRL) to guide adaptive drug scheduling and demonstrated that these treatment schedules can outperform the current adaptive protocols in a mathematical model calibrated to prostate cancer dynamics, more than doubling the time to progression. The DRL strategies were robust to patient variability, including both tumor dynamics and clinical monitoring schedules. The DRL framework could produce interpretable, adaptive strategies based on a single tumor burden threshold, replicating and informing optimal treatment strategies. The DRL framework had no knowledge of the underlying mathematical tumor model, demonstrating the capability of DRL to help develop treatment strategies in novel or complex settings. Finally, a proposed five-step pathway, which combined mechanistic modeling with the DRL framework and integrated conventional tools to improve interpretability compared with traditional "black-box" DRL models, could allow translation of this approach to the clinic. Overall, the proposed framework generated personalized treatment schedules that consistently outperformed clinical standard-of-care protocols. SIGNIFICANCE: Generation of interpretable and personalized adaptive treatment schedules using a deep reinforcement framework that interacts with a virtual patient model overcomes the limitations of standardized strategies caused by heterogeneous treatment responses.


Assuntos
Aprendizado Profundo , Medicina de Precisão , Neoplasias da Próstata , Humanos , Medicina de Precisão/métodos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Modelos Teóricos
5.
PLoS Comput Biol ; 20(2): e1011252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363799

RESUMO

Tumour angiogenesis leads to the formation of blood vessels that are structurally and spatially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxygen heterogeneity, impairs a tumour's response to radiotherapy. The optimal strategy for enhancing tumour perfusion remains unclear, preventing its regular deployment in combination therapies. In this work, we first identify vascular architectural features that correlate with enhanced perfusion following radiotherapy, using in vivo imaging data from vascular tumours. Then, we present a novel computational model to determine the relationship between these architectural features and blood perfusion in silico. If perfusion is defined to be the proportion of vessels that support blood flow, we find that vascular networks with small mean diameters and large numbers of angiogenic sprouts show the largest increases in perfusion post-irradiation for both biological and synthetic tumours. We also identify cases where perfusion increases due to the pruning of hypoperfused vessels, rather than blood being rerouted. These results indicate the importance of considering network composition when determining the optimal irradiation strategy. In the future, we aim to use our findings to identify tumours that are good candidates for perfusion enhancement and to improve the efficacy of combination therapies.


Assuntos
Hipóxia , Neoplasias , Humanos , Perfusão , Terapia Combinada , Oxigênio , Neoplasias/radioterapia
7.
Biophys J ; 123(7): 799-813, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38414238

RESUMO

Interstitial fluid flow is a feature of many solid tumors. In vitro experiments have shown that such fluid flow can direct tumor cell movement upstream or downstream depending on the balance between the competing mechanisms of tensotaxis (cell migration up stress gradients) and autologous chemotaxis (downstream cell movement in response to flow-induced gradients of self-secreted chemoattractants). In this work we develop a probabilistic-continuum, two-phase model for cell migration in response to interstitial flow. We use a kinetic description for the cell velocity probability density function, and model the flow-dependent mechanical and chemical stimuli as forcing terms that bias cell migration upstream and downstream. Using velocity-space averaging, we reformulate the model as a system of continuum equations for the spatiotemporal evolution of the cell volume fraction and flux in response to forcing terms that depend on the local direction and magnitude of the mechanochemical cues. We specialize our model to describe a one-dimensional cell layer subject to fluid flow. Using a combination of numerical simulations and asymptotic analysis, we delineate the parameter regime where transitions from downstream to upstream cell migration occur. As has been observed experimentally, the model predicts downstream-oriented chemotactic migration at low cell volume fractions, and upstream-oriented tensotactic migration at larger volume fractions. We show that the locus of the critical volume fraction, at which the system transitions from downstream to upstream migration, is dominated by the ratio of the rate of chemokine secretion and advection. Our model also predicts that, because the tensotactic stimulus depends strongly on the cell volume fraction, upstream, tensotaxis-dominated migration occurs only transiently when the cells are initially seeded, and transitions to downstream, chemotaxis-dominated migration occur at later times due to the dispersive effect of cell diffusion.


Assuntos
Quimiotaxia , Neoplasias , Humanos , Movimento Celular/fisiologia , Difusão , Modelos Biológicos
8.
Bull Math Biol ; 86(2): 19, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238433

RESUMO

Longitudinal tumour volume data from head-and-neck cancer patients show that tumours of comparable pre-treatment size and stage may respond very differently to the same radiotherapy fractionation protocol. Mathematical models are often proposed to predict treatment outcome in this context, and have the potential to guide clinical decision-making and inform personalised fractionation protocols. Hindering effective use of models in this context is the sparsity of clinical measurements juxtaposed with the model complexity required to produce the full range of possible patient responses. In this work, we present a compartment model of tumour volume and tumour composition, which, despite relative simplicity, is capable of producing a wide range of patient responses. We then develop novel statistical methodology and leverage a cohort of existing clinical data to produce a predictive model of both tumour volume progression and the associated level of uncertainty that evolves throughout a patient's course of treatment. To capture inter-patient variability, all model parameters are patient specific, with a bootstrap particle filter-like Bayesian approach developed to model a set of training data as prior knowledge. We validate our approach against a subset of unseen data, and demonstrate both the predictive ability of our trained model and its limitations.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Teorema de Bayes , Conceitos Matemáticos , Modelos Teóricos , Neoplasias/radioterapia
9.
WIREs Mech Dis ; 16(2): e1634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38084799

RESUMO

Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.


Assuntos
Neoplasias , Neovascularização Fisiológica , Humanos , Neovascularização Fisiológica/fisiologia , Células Endoteliais/fisiologia , Angiogênese , Simulação por Computador , Neoplasias/irrigação sanguínea , Microambiente Tumoral
10.
Bull Math Biol ; 85(8): 74, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378740

RESUMO

Cancer is a heterogeneous disease and tumours of the same type can differ greatly at the genetic and phenotypic levels. Understanding how these differences impact sensitivity to treatment is an essential step towards patient-specific treatment design. In this paper, we investigate how two different mechanisms for growth control may affect tumour cell responses to fractionated radiotherapy (RT) by extending an existing ordinary differential equation model of tumour growth. In the absence of treatment, this model distinguishes between growth arrest due to nutrient insufficiency and competition for space and exhibits three growth regimes: nutrient limited, space limited (SL) and bistable (BS), where both mechanisms for growth arrest coexist. We study the effect of RT for tumours in each regime, finding that tumours in the SL regime typically respond best to RT, while tumours in the BS regime typically respond worst to RT. For tumours in each regime, we also identify the biological processes that may explain positive and negative treatment outcomes and the dosing regimen which maximises the reduction in tumour burden.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Conceitos Matemáticos , Neoplasias/radioterapia , Neoplasias/patologia
11.
Dev Dyn ; 252(5): 629-646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692868

RESUMO

BACKGROUND: Collective and discrete neural crest cell (NCC) migratory streams are crucial to vertebrate head patterning. However, the factors that confine NCC trajectories and promote collective cell migration remain unclear. RESULTS: Computational simulations predicted that confinement is required only along the initial one-third of the cranial NCC migratory pathway. This guided our study of Colec12 (Collectin-12, a transmembrane scavenger receptor C-type lectin) and Trail (tumor necrosis factor-related apoptosis-inducing ligand, CD253) which we show expressed in chick cranial NCC-free zones. NCC trajectories are confined by Colec12 or Trail protein stripes in vitro and show significant and distinct changes in cell morphology and dynamic migratory characteristics when cocultured with either protein. Gain- or loss-of-function of either factor or in combination enhanced NCC confinement or diverted cell trajectories as observed in vivo with three-dimensional confocal microscopy, respectively, resulting in disrupted collective migration. CONCLUSIONS: These data provide evidence for Colec12 and Trail as novel NCC microenvironmental factors playing a role to confine cranial NCC trajectories and promote collective cell migration.


Assuntos
Movimento Celular , Galinhas , Crista Neural , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Galinhas/genética , Galinhas/fisiologia , Simulação por Computador , Crista Neural/citologia , Crista Neural/fisiologia , Crânio
12.
Bull Math Biol ; 84(8): 80, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773547

RESUMO

The processes underpinning solid tumour growth involve the interactions between various healthy and tumour tissue components and the vasculature, and can be affected in different ways by cancer treatment. In particular, the growth-limiting mechanisms at play may influence tumour responses to treatment. In this paper, we propose a simple ordinary differential equation model of solid tumour growth to investigate how tumour-specific mechanisms of growth arrest may affect tumour response to different combination cancer therapies. We consider the interactions of tumour cells with the physical space in which they proliferate and a nutrient supplied by the tumour vasculature, with the aim of representing two distinct growth arrest mechanisms. More specifically, we wish to consider growth arrest due to (1) nutrient deficiency, which corresponds to balancing cell proliferation and death rates, and (2) competition for space, which corresponds to cessation of proliferation without cell death. We perform numerical simulations of the model and a steady-state analysis to determine the possible tumour growth scenarios described by the model. We find that there are three distinct growth regimes: the nutrient- and spatially limited regimes and a bi-stable regime, in which both growth arrest mechanisms are simultaneously active. Thus, the proposed model has the features required to investigate and distinguish tumour responses to different cancer treatments.


Assuntos
Modelos Biológicos , Neoplasias , Simulação por Computador , Humanos , Conceitos Matemáticos , Matemática , Neoplasias/patologia
13.
Commun Med (Lond) ; 2: 46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603284

RESUMO

Background: Adaptive therapy aims to tackle cancer drug resistance by leveraging resource competition between drug-sensitive and resistant cells. Here, we present a theoretical study of intra-tumoral competition during adaptive therapy, to investigate under which circumstances it will be superior to aggressive treatment. Methods: We develop and analyse a simple, 2-D, on-lattice, agent-based tumour model in which cells are classified as fully drug-sensitive or resistant. Subsequently, we compare this model to its corresponding non-spatial ordinary differential equation model, and fit it to longitudinal prostate-specific antigen data from 65 prostate cancer patients undergoing intermittent androgen deprivation therapy following biochemical recurrence. Results: Leveraging the individual-based nature of our model, we explicitly demonstrate competitive suppression of resistance during adaptive therapy, and examine how different factors, such as the initial resistance fraction or resistance costs, alter competition. This not only corroborates our theoretical understanding of adaptive therapy, but also reveals that competition of resistant cells with each other may play a more important role in adaptive therapy in solid tumours than was previously thought. To conclude, we present two case studies, which demonstrate the implications of our work for: (i) mathematical modelling of adaptive therapy, and (ii) the intra-tumoral dynamics in prostate cancer patients during intermittent androgen deprivation treatment, a precursor of adaptive therapy. Conclusion: Our work shows that the tumour's spatial architecture is an important factor in adaptive therapy and provides insights into how adaptive therapy leverages both inter- and intra-specific competition to control resistance.

14.
J Theor Biol ; 545: 111104, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337794

RESUMO

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.


Assuntos
Hipóxia , Oxigênio , Hipóxia Celular/fisiologia , DNA/metabolismo , Humanos , Modelos Teóricos , Oxigênio/metabolismo
15.
J R Soc Interface ; 18(175): 20200950, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593209

RESUMO

While the pathological mechanisms in COVID-19 illness are still poorly understood, it is increasingly clear that high levels of pro-inflammatory mediators play a major role in clinical deterioration in patients with severe disease. Current evidence points to a hyperinflammatory state as the driver of respiratory compromise in severe COVID-19 disease, with a clinical trajectory resembling acute respiratory distress syndrome, but how this 'runaway train' inflammatory response emerges and is maintained is not known. Here, we present the first mathematical model of lung hyperinflammation due to SARS-CoV-2 infection. This model is based on a network of purported mechanistic and physiological pathways linking together five distinct biochemical species involved in the inflammatory response. Simulations of our model give rise to distinct qualitative classes of COVID-19 patients: (i) individuals who naturally clear the virus, (ii) asymptomatic carriers and (iii-v) individuals who develop a case of mild, moderate, or severe illness. These findings, supported by a comprehensive sensitivity analysis, point to potential therapeutic interventions to prevent the emergence of hyperinflammation. Specifically, we suggest that early intervention with a locally acting anti-inflammatory agent (such as inhaled corticosteroids) may effectively blockade the pathological hyperinflammatory reaction as it emerges.


Assuntos
COVID-19/imunologia , COVID-19/fisiopatologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Inflamação/imunologia , Pulmão/fisiopatologia , Corticosteroides , Citocinas/imunologia , Epitélio/imunologia , Humanos , Pulmão/patologia , Modelos Imunológicos , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia , SARS-CoV-2/patogenicidade
16.
Cancer Res ; 81(4): 1135-1147, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33172930

RESUMO

Adaptive therapy seeks to exploit intratumoral competition to avoid, or at least delay, the emergence of therapy resistance in cancer. Motivated by promising results in prostate cancer, there is growing interest in extending this approach to other neoplasms. As such, it is urgent to understand the characteristics of a cancer that determine whether or not it will respond well to adaptive therapy. A plausible candidate for such a selection criterion is the fitness cost of resistance. In this article, we study a general, but simple, mathematical model to investigate whether the presence of a cost is necessary for adaptive therapy to extend the time to progression beyond that of a standard-of-care continuous therapy. Tumor cells were divided into sensitive and resistant populations and we model their competition using a system of two ordinary differential equations based on the Lotka-Volterra model. For tumors close to their environmental carrying capacity, a cost was not required. However, for tumors growing far from carrying capacity, a cost may be required to see meaningful gains. Notably, it is important to consider cell turnover in the tumor, and we discuss its role in modulating the impact of a resistance cost. To conclude, we present evidence for the predicted cost-turnover interplay in data from 67 patients with prostate cancer undergoing intermittent androgen deprivation therapy. Our work helps to clarify under which circumstances adaptive therapy may be beneficial and suggests that turnover may play an unexpectedly important role in the decision-making process. SIGNIFICANCE: Tumor cell turnover modulates the speed of selection against drug resistance by amplifying the effects of competition and resistance costs; as such, turnover is an important factor in resistance management via adaptive therapy.See related commentary by Strobl et al., p. 811.


Assuntos
Preparações Farmacêuticas , Neoplasias da Próstata , Antagonistas de Androgênios , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
17.
Proc Math Phys Eng Sci ; 477(2256): 20210593, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35153606

RESUMO

In this paper, we carry out a travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion. We consider two types of invasive fronts of tumour tissue into extracellular matrix (ECM), which represents healthy tissue. These types differ according to whether the density of ECM far ahead of the wave front is maximal or not. In the former case, we use a shooting argument to prove that there exists a unique travelling-wave solution for any positive propagation speed. In the latter case, we further develop this argument to prove that there exists a unique travelling-wave solution for any propagation speed greater than or equal to a strictly positive minimal wave speed. Using a combination of analytical and numerical results, we conjecture that the minimal wave speed depends monotonically on the degradation rate of ECM by tumour cells and the ECM density far ahead of the front.

18.
Phys Rev E ; 102(4-1): 042404, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212726

RESUMO

Deterministic continuum models formulated as nonlocal partial differential equations for the evolutionary dynamics of populations structured by phenotypic traits have been used recently to address open questions concerning the adaptation of asexual species to periodically fluctuating environmental conditions. These models are usually defined on the basis of population-scale phenomenological assumptions and cannot capture adaptive phenomena that are driven by stochastic variability in the evolutionary paths of single individuals. In light of these considerations, in this paper we develop a stochastic individual-based model for the coevolution of two competing phenotype-structured cell populations that are exposed to time-varying nutrient levels and undergo spontaneous, heritable phenotypic changes with different probabilities. Here, the evolution of every cell is described by a set of rules that result in a discrete-time branching random walk on the space of phenotypic states, and nutrient levels are governed by a difference equation in which a sink term models nutrient consumption by the cells. We formally show that the deterministic continuum counterpart of this model comprises a system of nonlocal partial differential equations for the cell population density functions coupled with an ordinary differential equation for the nutrient concentration. We compare the individual-based model and its continuum analog, focusing on scenarios whereby the predictions of the two models differ. The results obtained clarify the conditions under which significant differences between the two models can emerge due to bottleneck effects that bring about both lower regularity of the density functions of the two populations and more pronounced demographic stochasticity. In particular, bottleneck effects emerge in the presence of lower probabilities of phenotypic variation and are more apparent when the two populations are characterized by lower fitness initial mean phenotypes and smaller initial levels of phenotypic heterogeneity. The emergence of these effects, and thus the agreement between the two modeling approaches, is also dependent on the initial proportions of the two populations. As an illustrative example, we demonstrate the implications of these results in the context of the mathematical modeling of the early stage of metastatic colonization of distant organs.


Assuntos
Evolução Molecular , Modelos Genéticos , Fenótipo , Adaptação Fisiológica , Meio Ambiente , Processos Estocásticos
19.
Proc Natl Acad Sci U S A ; 117(45): 27811-27819, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109723

RESUMO

Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal vascular structure of the tumor, but the precise mechanisms linking abnormal structure and compromised oxygen transport are only partially understood. In this paper, we investigate the role that red blood cell (RBC) transport plays in establishing oxygen heterogeneity in tumor tissue. We focus on heterogeneity driven by network effects, which are challenging to observe experimentally due to the reduced fields of view typically considered. Motivated by our findings of abnormal vascular patterns linked to deviations from current RBC transport theory, we calculated average vessel lengths [Formula: see text] and diameters [Formula: see text] from tumor allografts of three cancer cell lines and observed a substantial reduction in the ratio [Formula: see text] compared to physiological conditions. Mathematical modeling reveals that small values of the ratio λ (i.e., [Formula: see text]) can bias hematocrit distribution in tumor vascular networks and drive heterogeneous oxygenation of tumor tissue. Finally, we show an increase in the value of λ in tumor vascular networks following treatment with the antiangiogenic cancer agent DC101. Based on our findings, we propose λ as an effective way of monitoring the efficacy of antiangiogenic agents and as a proxy measure of perfusion and oxygenation in tumor tissue undergoing antiangiogenic treatment.


Assuntos
Circulação Sanguínea/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Inibidores da Angiogênese/uso terapêutico , Animais , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Eritrócitos/metabolismo , Heterogeneidade Genética , Hematócrito , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Modelos Teóricos , Neoplasias/tratamento farmacológico , Oxigênio/metabolismo , Perfusão
20.
Bull Math Biol ; 82(6): 81, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32556703

RESUMO

The disordered network of blood vessels that arises from tumour angiogenesis results in variations in the delivery of oxygen into the tumour tissue. This brings about regions of chronic hypoxia (i.e. sustained low oxygen levels) and regions with alternating periods of low and relatively higher oxygen levels, and makes it necessary for cancer cells to adapt to fluctuating environmental conditions. We use a phenotype-structured model to dissect the evolutionary dynamics of cell populations exposed to fluctuating oxygen levels. In this model, the phenotypic state of every cell is described by a continuous variable that provides a simple representation of its metabolic phenotype, ranging from fully oxidative to fully glycolytic, and cells are grouped into two competing populations that undergo heritable, spontaneous phenotypic variations at different rates. Model simulations indicate that, depending on the rate at which oxygen is consumed by the cells, dynamic nonlinear interactions between cells and oxygen can stimulate chronic hypoxia and cycling hypoxia. Moreover, the model supports the idea that under chronic-hypoxic conditions lower rates of phenotypic variation lead to a competitive advantage, whereas higher rates of phenotypic variation can confer a competitive advantage under cycling-hypoxic conditions. In the latter case, the numerical results obtained show that bet-hedging evolutionary strategies, whereby cells switch between oxidative and glycolytic phenotypes, can spontaneously emerge. We explain how these results can shed light on the evolutionary process that may underpin the emergence of phenotypic heterogeneity in vascularised tumours.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Neoplasias/metabolismo , Oxigênio/metabolismo , Biologia Computacional , Simulação por Computador , Glicólise , Humanos , Conceitos Matemáticos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Dinâmica não Linear , Oxirredução , Consumo de Oxigênio , Fenótipo , Processos Estocásticos , Hipóxia Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA