Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 458(2): 228-236, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31697936

RESUMO

Significant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms directing endodermal progenitors towards the HPD fate and emphasize the tissue specific requirement of Hhex during development.


Assuntos
Hepatopâncreas/embriologia , Hepatopâncreas/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Padronização Corporal/fisiologia , Sistema Digestório/metabolismo , Embrião não Mamífero/metabolismo , Endoderma/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatopâncreas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868165

RESUMO

During cardiac development, cardiomyocytes form complex inner wall structures called trabeculae. Despite significant investigation into this process, the potential role of metabolism has not been addressed. Using single cell resolution imaging in zebrafish, we find that cardiomyocytes seeding the trabecular layer actively change their shape while compact layer cardiomyocytes remain static. We show that Erbb2 signaling, which is required for trabeculation, activates glycolysis to support changes in cardiomyocyte shape and behavior. Pharmacological inhibition of glycolysis impairs cardiac trabeculation, and cardiomyocyte-specific loss- and gain-of-function manipulations of glycolysis decrease and increase trabeculation, respectively. In addition, loss of the glycolytic enzyme pyruvate kinase M2 impairs trabeculation. Experiments with rat neonatal cardiomyocytes in culture further support these observations. Our findings reveal new roles for glycolysis in regulating cardiomyocyte behavior during cardiac wall morphogenesis.


Assuntos
Coração/embriologia , Coração/crescimento & desenvolvimento , Morfogênese/fisiologia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Genes erbB-2/genética , Glicólise , Coração/fisiologia , Modelos Animais , Morfogênese/genética , Organogênese/genética , Organogênese/fisiologia , Ratos , Transdução de Sinais/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Nat Commun ; 9(1): 2704, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006544

RESUMO

Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Linfangiogênese/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Linhagem Celular , Embrião de Mamíferos , Embrião não Mamífero , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Proteínas Repressoras/deficiência , Transdução de Sinais , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
4.
Elife ; 72018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29952749

RESUMO

Pitx2c, a homeodomain transcription factor, is classically known for its left-right patterning role. However, an early wave of pitx2 expression occurs at the onset of gastrulation in several species, indicating a possible earlier role that remains relatively unexplored. Here we show that in zebrafish, maternal-zygotic (MZ) pitx2c mutants exhibit a shortened body axis indicative of convergence and extension (CE) defects. Live imaging reveals that MZpitx2c mutants display less persistent mesendodermal migration during late stages of gastrulation. Transplant data indicate that Pitx2c functions cell non-autonomously to regulate this cell behavior by modulating cell shape and protrusive activity. Using transcriptomic analyses and candidate gene approaches, we identify transcriptional changes in components of the chemokine-ECM-integrin dependent mesendodermal migration network. Together, our results define pathways downstream of Pitx2c that are required during early embryogenesis and reveal novel functions for Pitx2c as a regulator of morphogenesis.


Assuntos
Movimento Celular/genética , Desenvolvimento Embrionário/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Forma Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Embrião não Mamífero , Endoderma/citologia , Endoderma/metabolismo , Células Epiteliais/citologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Gastrulação/genética , Integrinas/genética , Integrinas/metabolismo , Mutação , Notocorda/citologia , Notocorda/metabolismo , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo , Transcriptoma , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
5.
Development ; 145(10)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773645

RESUMO

Cardiac trabeculation is a highly regulated process that starts with the delamination of compact layer cardiomyocytes. The Hippo signaling pathway has been implicated in cardiac development but many questions remain. We have investigated the role of Wwtr1, a nuclear effector of the Hippo pathway, in zebrafish and find that its loss leads to reduced cardiac trabeculation. However, in mosaic animals, wwtr1-/- cardiomyocytes contribute more frequently than wwtr1+/- cardiomyocytes to the trabecular layer of wild-type hearts. To investigate this paradox, we examined the myocardial wall at early stages and found that compact layer cardiomyocytes in wwtr1-/- hearts exhibit disorganized cortical actin structure and abnormal cell-cell junctions. Accordingly, wild-type cardiomyocytes in mosaic mutant hearts contribute less frequently to the trabecular layer than when present in mosaic wild-type hearts, indicating that wwtr1-/- hearts are not able to support trabeculation. We also found that Nrg/Erbb2 signaling, which is required for trabeculation, could promote Wwtr1 nuclear export in cardiomyocytes. Altogether, these data suggest that Wwtr1 establishes the compact wall architecture necessary for trabeculation, and that Nrg/Erbb2 signaling negatively regulates its nuclear localization and therefore its activity.


Assuntos
Coração/embriologia , Coração/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos Cardíacos/citologia , Organogênese/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células/fisiologia , Junções Intercelulares/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Morfolinos/genética , Cadeias Pesadas de Miosina/genética , Neurregulinas/metabolismo , Organogênese/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor ErbB-2/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Troponina T/genética , Proteínas de Sinalização YAP , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Nat Commun ; 8: 15492, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524872

RESUMO

Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair. Importantly, macrophage ablation is sufficient to recapitulate the vascular phenotypes observed in hif-1α mutants, revealing for the first time a macrophage-dependent angiogenic process during development. Further substantiating our observations of vascular repair, we find that most macrophages closely associated with ruptured blood vessels are Tnfα-positive, a key feature of classically activated macrophages. Altogether, our data provide genetic evidence that Hif-1α regulates interactions between macrophages and endothelial cells starting with the mobilization of macrophages from the AGM.


Assuntos
Vasos Sanguíneos/embriologia , Células Endoteliais/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/citologia , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alelos , Animais , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Microscopia Confocal , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/química , Fenótipo , Tamanho da Amostra , Transdução de Sinais , Peixe-Zebra/embriologia
7.
Elife ; 52016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27852438

RESUMO

Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs.


Assuntos
Diferenciação Celular/genética , Organogênese/genética , Medula Espinal/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Mosaicismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Transdução de Sinais/genética , Medula Espinal/irrigação sanguínea , Medula Espinal/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
8.
Proc Natl Acad Sci U S A ; 113(27): 7569-74, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339140

RESUMO

During cardiac trabeculation, cardiomyocytes delaminate from the outermost (compact) layer to form complex muscular structures known as trabeculae. As these cardiomyocytes delaminate, the remodeling of adhesion junctions must be tightly coordinated so cells can extrude from the compact layer while remaining in tight contact with their neighbors. In this study, we examined the distribution of N-cadherin (Cdh2) during cardiac trabeculation in zebrafish. By analyzing the localization of a Cdh2-EGFP fusion protein expressed under the control of the zebrafish cdh2 promoter, we initially observed Cdh2-EGFP expression along the lateral sides of embryonic cardiomyocytes, in an evenly distributed pattern, and with the occasional appearance of punctae. Within a few hours, Cdh2-EGFP distribution on the lateral sides of cardiomyocytes evolves into a clear punctate pattern as Cdh2-EGFP molecules outside the punctae cluster to increase the size of these aggregates. In addition, Cdh2-EGFP molecules also appear on the basal side of cardiomyocytes that remain in the compact layer. Delaminating cardiomyocytes accumulate Cdh2-EGFP on the surface facing the basal side of compact layer cardiomyocytes, thereby allowing tight adhesion between these layers. Importantly, we find that blood flow/cardiac contractility is required for the transition from an even distribution of Cdh2-EGFP to the formation of punctae. Furthermore, using time-lapse imaging of beating hearts in conjunction with a Cdh2 tandem fluorescent protein timer transgenic line, we observed that Cdh2-EGFP molecules appear to move from the lateral to the basal side of cardiomyocytes along the cell membrane, and that Erb-b2 receptor tyrosine kinase 2 (Erbb2) function is required for this relocalization.


Assuntos
Caderinas/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Circulação Coronária , Proteínas de Fluorescência Verde , Contração Miocárdica , Receptor ErbB-2/metabolismo , Peixe-Zebra
9.
Cell Rep ; 12(4): 694-708, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26190107

RESUMO

Floor-plate-derived extracellular signaling molecules, including canonical axon guidance cues of the Netrin family, control neuronal circuit organization. Despite the importance of the floor plate as an essential signaling center in the developing vertebrate central nervous system, no systematic approach to identify binding partners for floor-plate-expressed cell-surface and secreted proteins has been carried out. Here, we used a high-throughput assay to discover extracellular protein-protein interactions, which likely take place in the zebrafish floor-plate microenvironment. The assembled floor-plate network contains 47 interactions including the hitherto-not-reported interaction between Netrin-1 and Draxin. We further characterized this interaction, narrowed down the binding interface, and demonstrated that Draxin competes with Netrin receptors for binding to Netrin-1. Our results suggest that Draxin functions as an extracellular Netrin signaling modulator in vertebrates. A reciprocal gradient of Draxin might shape or sharpen the active Netrin gradient, thereby critically modulating its effect.


Assuntos
Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Netrina-1 , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/química
10.
Development ; 132(14): 3255-65, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983403

RESUMO

Epithelial cells are equipped with junctional complexes that are involved in maintaining tissue architecture, providing mechanical integrity and suppressing tumour formation as well as invasiveness. A strict spatial segregation of these junctional complexes leads to the polarisation of epithelial cells. In vertebrate epithelia, basally localised hemidesmosomes mediate stable adhesion between epithelial cells and the underlying basement membrane. Although components of hemidesmosomes are relatively well known, the molecular machinery involved in governing the formation of these robust junctions, remains elusive. Here, we have identified the first component of this machinery using a forward genetic approach in zebrafish as we show that the function of penner (pen)/lethal giant larvae 2 (lgl2) is necessary for hemidesmosome formation and maintenance of the tissue integrity in the developing basal epidermis. Moreover, in pen/lgl2 mutant, basal epidermal cells hyper-proliferate and migrate to ectopic positions. Of the two vertebrate orthologues of the Drosophila tumour suppressor gene lethal giant larvae, the function of lgl2 in vertebrate development and organogenesis remained unclear so far. Here, we have unravelled an essential function of lgl2 during development of the epidermis in vertebrates.


Assuntos
Proteínas de Drosophila/fisiologia , Células Epidérmicas , Epiderme/embriologia , Genes Letais , Hemidesmossomos/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Epiderme/crescimento & desenvolvimento , Microscopia de Interferência , Dados de Sequência Molecular , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética
11.
Mol Endocrinol ; 18(5): 1185-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14752054

RESUMO

The adenohypophysis consists of at least six different cell types, somatotropes, lactotropes, thyrotropes, melanotropes, corticotropes, and gonadotropes. In mouse, cloning of spontaneous mutations and gene targeting has revealed multiple genes required for different steps of adenohypophysis development. Here, we report the results of a systematic search for genes required for adenohypophysis formation and patterning in zebrafish. By screening F3 offspring of N-ethyl-N-nitrosourea-mutagenized founder fish, we isolated eleven mutants with absent or reduced expression of GH, the product of somatotropes, but a normally developing hypothalamus. Of such mutants, eight were further analyzed and mapped. They define four genes essential for different steps of adenohypophysis development. Two of them, lia and pia, affect the entire adenohypophysis, whereas the other two are required for a subset of adenohypophyseal cell types only. The third gene is zebrafish pit1 and is required for lactotropes, thyrotropes, and somatotropes, similar to its mouse ortholog, whereas the fourth, aal, is required for corticotropes, melanotropes, thyrotropes, and somatotropes, but not lactotropes. In conclusion, the isolated zebrafish mutants confirm principles of adenohypophysis development revealed in mouse, thereby demonstrating the high degree of molecular and mechanistic conservation among the different vertebrate species. In addition, they point to thus far unknown features of adenohypophysis development, such as the existence of a new lineage of pituitary cells, which partially overlaps with the Pit1 lineage. Positional cloning of the lia, pia, and aal genes might reveal novel regulators of vertebrate pituitary development.


Assuntos
Linhagem da Célula/genética , Mutação/genética , Adeno-Hipófise/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Adeno-Hipófise/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA