Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(18): 5081-5112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33544009

RESUMO

Inflammation is associated with the development and progression of various disorders including atherosclerosis, diabetes mellitus and cancer. Sesamin, a fat-soluble lignan derived from Sesamum indicum seeds and oil, has received increased attention due to its wide array of pharmacological properties including its immunomodulatory and anti-inflammatory potential. To date, no review has been conducted to summarize or analyze the immunomodulatory and anti-inflammatory roles of sesamin. Herein, we provide a comprehensive review of experimental findings that were reported with regards to the ability of sesamin to modulate inflammation, cellular and humoral adaptive immune responses and Th1/Th2 paradigm. The potential influence of sesamin on the cytotoxic activity of NK cells against cancer cells is also highlighted. The molecular mechanisms and the signal transduction pathways underlying such effects are underscored. The metabolism, pharmacokinetics, absorption, tissue distribution and bioavailability of sesamin in different species, including humans, are reviewed. Moreover, we propose future preclinical and clinical investigations to further validate the potential preventive and/or therapeutic efficacy of sesamin against various immune-related and inflammatory conditions. We anticipate that sesamin may be employed in future therapeutic regimens to enhance the efficacy of treatment and dampen the adverse effects of synthetic chemical drugs currently used to alleviate immune-related and inflammatory conditions.


Assuntos
Lignanas , Sesamum , Anti-Inflamatórios/farmacologia , Dioxóis , Humanos , Imunidade , Inflamação/tratamento farmacológico , Lignanas/farmacologia , Sesamum/química
2.
J Org Chem ; 86(18): 12872-12885, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34477383

RESUMO

The indolo[2,3-a]quinolizines, canthines, and arborescidines natural products exhibit a wide range of bioactivities including anticancer, antiviral, antibacterial, and anti-inflammatory, among others. Therefore, the development of modular and efficient strategies to access the core scaffolds of these classes of natural products is a remarkable achievement. The Complexity-to-Diversity (CtD) strategy has become a powerful tool that transforms natural products into skeletal and stereochemical diversity. However, many of the reactions that could be utilized in this process are limited by the type of functional groups present in the starting material, which restrict transformations into a variety of products to achieve the desired diversity. In the course of employing a (CtD) strategy en route to the synthesis of nature-inspired compounds, unexpected stereoelectronic-driven rearrangement reactions have been discovered. These reactions provided a rapid access to indolo[2,3-a]quinolizines-, canthines-, and arborescidines-inspired alkaloids in a modular and diastereoselective manner. The disclosed strategies will be widely applicable to other late-stage natural product transformation programs and drug discovery initiatives.


Assuntos
Alcaloides , Produtos Biológicos , Descoberta de Drogas , Quinolizinas
3.
IEEE Rev Biomed Eng ; 14: 307-326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32746363

RESUMO

Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.


Assuntos
Medições Luminescentes , Imagem Molecular , Neoplasias/diagnóstico por imagem , Imagem Óptica , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Imagens de Fantasmas
4.
Sci Total Environ ; 741: 140450, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886985

RESUMO

Surfactants are widely used in the industry of detergents, household products, and cosmetics. SAPDMA is a cationic surfactant that is used mostly in cosmetics, conditioning agents and has recently gained attention as a corrosion inhibitor in the sea pipelines industry. In this regard, literature concerning the ecotoxicological classification of SAPDMA on aquatic animals is lacking. This study aims to evaluate the potential ecotoxicity of SAPDMA using the aquatic zebrafish embryo model. The potential toxic effects of SAPDMA were assessed by different assays. This includes (i) mortality/survival assay to assess the median lethal concentration (LC50); (ii) teratogenicity assay to assess the no observed effect concentration (NOEC); (iii) organ-specific toxicity assays including cardiotoxicity, neurotoxicity (using locomotion assay), hematopoietic toxicity (hemoglobin synthesis using o-dianisidine staining), hepatotoxicity (liver steatosis and yolk retention using Oil Red O (ORO) stain); (iv) cellular cytotoxicity (mitochondrial membrane potential) by measuring the accumulation of JC-1 dye into mitochondria. Exposure of embryos to SAPDMA caused mortality in a dose-dependent manner with a calculated LC50 of 2.3 mg/L. Thus, based on the LC50 value and according to the Fish and Wildlife Service (FWS) Acute Toxicity Rating Scale, SAPDMA is classified as "moderately toxic". The No Observed Effect Concentration (NOEC) concerning a set of parameters including scoliosis, changes in body length, yolk, and eye sizes was 0.1 mg/L. At the same NOEC concentration (0.1 mg/L), no organ-specific toxicity was detected in fish treated with SAPDMA, except hepatomegaly with no associated liver dysfunctions. However, higher SAPDMA concentrations (0.8 mg/L) have dramatic effects on zebrafish organ development (eye, heart, and liver development). Our data recommend a re-evaluation of the SAPDMA employment in the industry setting and its strictly monitoring by environmental and public health agencies.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Dimetilaminas , Embrião não Mamífero , Dose Letal Mediana , Tensoativos
5.
J Org Chem ; 85(16): 10695-10708, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806094

RESUMO

Nitrogen and oxygen medium rings, in particular nine-membered rings, epitomize a unique area of chemical space that occurs in many natural products and biologically appealing compounds. The scarcity of 8- to 12-membered rings among clinically approved drugs is indicative of the difficulties associated with their synthesis, principally owing to the unfavorable entropy and transannular strain. We report here a scandium triflate-catalyzed reaction that allows for a modular access to a diverse collection of nine-membered ring heterocycles in a one-pot cascade and with complete diastereocontrol. This cascade features an intramolecular addition of an acyl group-derived enol to a α,ß-unsaturated carbonyl moiety, leading to N- and O-derived medium-ring systems. Computational studies using the density functional theory support the proposed mechanism. Additionally, a one-pot cascade leading to hexacyclic chromeno[3',4':2,3]indolizino[8,7-b]indole architectures, with six fused rings and four contiguous chiral centers, is reported. This novel cascade features many concerted events, including the formation of two azomethine ylides, [3 + 2]-cycloaddition, 1,3-sigmatropic rearrangement, Michael addition, and Pictet-Spengler reaction among others. Phenotypic screening of the resulting oxazonine collection identified chemical probes that regulate mitochondrial membrane potential, adenosine 5'-triphosphate contents, and reactive oxygen species levels in hepatoma cells (Hepa1-6), a promising approach for targeting cancer and metabolic disorders.

6.
Eur J Pharmacol ; 885: 173417, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750369

RESUMO

Sesamin is the major lignan constituent derived from Sesamum indicum seeds and sesame oil. Various studies have reported that sesamin possesses potent lipid-lowering properties. The lipid-lowering effects of sesamin have been mainly attributed to its ability in affecting key events in fatty acid and cholesterol metabolism and in lowering atherogenesis-triggering LDL, VLDL and TG levels, as well as in increasing atheroprotective HDL levels. In this review, we provide a comprehensive summary of the reported anti-hyperlipidemic effects of sesamin, presented both in vitro and in vivo. The molecular anti-hyperlipidemic properties of sesamin that underlie its well-documented anti-atherogenic effects are thoroughly discussed and analyzed. Studies focusing on the ability of sesamin to inhibit fatty acid synthesis, induce fatty acid oxidation, inhibit cholesterol synthesis and absorption and maintain macrophage cholesterol homeostasis are outlined. The effects of sesamin on circulating serum and liver lipid levels are also highlighted. Moreover, the anti-hyperlipidemic effects of sesamin are compared to those of other important sesame lignans like sesamolin and episesamin. Findings reveal that sesamin mainly exerts its anti-hyperlipidemic effects by targeting Δ5 desaturase, HMGCR, ABCA1 and ABCG1 through PPARα, PPARγ, LXRα, and SREBP signaling pathways. Overall, the amount of evidence supporting the anti-hyperlipidemic potential of sesamin in vitro and in vivo is compelling. A thorough understanding of the mechanisms underlying the anti-hyperlipidemic properties of sesamin is imperative for the possible employment of sesamin as an anti-hyperlipidemic and anti-atherogenic agent with minimal side effects.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Dioxóis/farmacologia , Ácidos Graxos/metabolismo , Lignanas/farmacologia , Macrófagos/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos
7.
J Oncol ; 2020: 8097872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565808

RESUMO

Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.

8.
Materials (Basel) ; 13(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075305

RESUMO

The employment of plant extracts in the synthesis of metal nanoparticles is a very attractive approach in the field of green synthesis. To benefit from the potential synergy between the biological activities of the Moringa oleifera and metallic bismuth, our study aimed to achieve a green synthesis of phytochemical encapsulated bismuth nanoparticles using a hydroalcoholic extract of M. oleifera leaves. The total phenolic content in the M. oleifera leaves extract used was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The physical properties of the synthesized bismuth nanoparticles were characterized using UV-Vis spectrophotometer, FT-IR spectrometer, TEM, SEM, and XRD. The size of the synthesized bismuth nanoparticles is in the range of 40.4-57.8 nm with amorphous morphology. Using DPPH and phosphomolybdate assays, our findings revealed that the M. oleifera leaves extract and the synthesized bismuth nanoparticles possess antioxidant properties. Using resazurin microtiter assay, we also demonstrate that the M. oleifera leaves extract and the synthesized bismuth nanoparticles exert potent anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (estimated MIC values for the extract: 500, 250, 250, and 250 µg/mL; estimated MIC values for the bismuth nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized bismuth nanoparticles display relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (estimated MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; estimated MIC values for the bismuth nanoparticles: 250, 250, 62.5, and 62.5 µg/mL, respectively). Thus, green synthesis of bismuth nanoparticles using M. oleifera leaves extract was successful, showing a positive antioxidant, anti-bacterial, and anti-fungal activity. Therefore, the synthesized bismuth nanoparticles can potentially be employed in the alleviation of symptoms associated with oxidative stress and in the topic treatment of Candida infections.

9.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012912

RESUMO

: The synthesis of metal nanoparticles using plant extracts is a very promising method in green synthesis. The medicinal value of Moringa oleifera leaves and the antimicrobial activity of metallic copper were combined in the present study to synthesize copper nanoparticles having a desirable added-value inorganic material. The use of a hydroalcoholic extract of M. oleifera leaves for the green synthesis of copper nanoparticles is an attractive method as it leads to the production of harmless chemicals and reduces waste. The total phenolic content in the M. oleifera leaves extract was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The M. oleifera leaves extract was treated with a copper sulphate solution. A color change from brown to black indicates the formation of copper nanoparticles. Characterization of the synthesized copper nanoparticles was performed using ultraviolet-visible light (UV-Vis) spectrophotometry, Fourier-transform infrared (FTIR) spectrometry, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The synthesized copper nanoparticles have an amorphous nature and particle size of 35.8-49.2 nm. We demonstrate that the M. oleifera leaves extract and the synthesized copper nanoparticles display considerable antioxidant activity. Moreover, the M. oleifera leaves extract and the synthesized copper nanoparticles exert considerable anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (MIC values for the extract: 500, 250, 250, and 250 µg/mL; MIC values for the copper nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized copper nanoparticles exert relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; MIC values for the copper nanoparticles: 125, 125, 62.5, and 31.2 µg/mL, respectively). Our study reveals that the green synthesis of copper nanoparticles using a hydroalcoholic extract of M. oleifera leaves was successful. In addition, the synthesized copper nanoparticles can be potentially employed in the treatment of various microbial infections due to their reported antioxidant, anti-bacterial, and anti-fungal activities.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cobre/química , Moringa oleifera/química , Fenóis/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antioxidantes/síntese química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Cápsulas , Fungos/efeitos dos fármacos , Química Verde , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Extratos Vegetais/química , Folhas de Planta/química
10.
Eur J Pharmacol ; 855: 75-89, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31063773

RESUMO

Sesamol is a natural phenolic compound and a major lignan isolated from sesame seeds (Sesamum indicum) and sesame oil. The therapeutic potential of sesamol was investigated intensively, and there is compelling evidence that sesamol acts as a metabolic regulator that possesses antioxidant, anti-mutagenic, anti-hepatotoxic, anti-inflammatory, anti-aging, and chemopreventive properties. Various studies have reported that sesamol exerts potent anti-cancer effects. Herein, we provide a comprehensive review that summarizes the in vitro and in vivo anti-cancer activity of sesamol in several cancer cell lines and animal models. The protective role that sesamol plays against oxidative stress through its radical scavenging ability and lipid peroxidation lowering potential is analyzed. The ability of sesamol to regulate apoptosis and various stages of the cell cycle is also outlined. Moreover, the signaling pathways that sesamol seems to target to execute its antioxidant, anti-inflammatory, and pro-apoptotic/anti-proliferative roles are discussed. The signaling pathways that sesamol targets include the p53, MAPK, JNK, PI3K/AKT, TNFα, NF-κB, PPARγ, caspase-3, Nrf2, eNOS, and LOX pathways. The mechanisms of action that sesamol executes to deliver its anti-cancer effects are delineated. In sum, there is ample evidence suggesting that sesamol possesses potent anti-cancer properties in vitro and in vivo. A thorough understanding of the molecular targets of sesamol and the mechanisms of action underlying its anti-cancer effects is necessary for possible employment of sesamol as a chemotherapeutic agent in cancer prevention and therapy.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Fenóis/farmacologia , Sementes/química , Sesamum/química , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos
11.
Eur J Pharmacol ; 815: 512-521, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29032105

RESUMO

Sesamin is the major active ingredient is Sesamum indicum seeds. Several studies revealed that sesamin possesses potent anti-cancer properties. The anti-cancer effects of sesamin have been mainly attributed to its anti-proliferative, pro-apoptotic, anti-inflammatory, anti-metastatic, anti- and pro-angiogenic, and pro-autophagocytic activities. In this review, we provide a comprehensive summary of the reported anti-cancer effects of sesamin, both in vitro and in vivo. Experimental findings related to the potential of sesamin to attenuate oxidative stress, inflammation, proliferation, metastasis, and angiogenesis in various cancer cells and tumors are analyzed. Studies focusing on the ability of sesamin to induce apoptosis and autophagy in cancer cells are also underscored. Moreover, the molecular mechanisms underlying the anti-cancer effects of sesamin are highlighted, and the major signaling pathways targeted by sesamin are identified. Although the exact signaling events triggered by sesamin in cancer cells are not fully revealed, our analysis indicates that NF-κB, STAT3, JNK, ERK1/2, p38 MAPK, PI3K/AKT, caspase-3, and p53 signaling pathways are critically involved in mediating the anti-cancer effects of sesamin. In sum, the experimental evidence suggesting that sesamin could exert potent anti-cancer activities in vitro and in vivo is compelling. Hence, sesamin can potentially be employed as an effective adjuvant therapeutic agent in ameliorating tumor development and progression, and therefore, it could be used in the prevention and/or treatment of various types of cancer.


Assuntos
Antineoplásicos/farmacologia , Dioxóis/farmacologia , Lignanas/farmacologia , Sementes/química , Sesamum/química , Animais , Antineoplásicos/uso terapêutico , Dioxóis/uso terapêutico , Humanos , Lignanas/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/patologia
12.
Crit Rev Food Sci Nutr ; 57(18): 3911-3928, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-28140613

RESUMO

Over the past two decades, studies have documented the wide-range anti-cancer effects of Nigella sativa, known as black seed or black cumin. Thymoquinone (TQ), its major active ingredient, has also been extensively studied and reported to possess potent anti-cancer properties. Herein, we provide a comprehensive review of the findings related to the anti-cancer activity of TQ. The review focuses on analyzing experimental studies performed using different in vitro and in vivo models to identify the anti-proliferative, pro-apoptotic, anti-oxidant, cytotoxic, anti-metastatic, and NK-dependent cytotoxic effects exerted by TQ. In addition, we pinpoint the molecular mechanisms underlying these effects and the signal transduction pathways implicated by TQ. Our analysis show that p53, NF-κB, PPARγ, STAT3, MAPK, and PI3K/AKT signaling pathways are among the most significant pathways through which TQ mediates its anti-cancer activity. Experimental findings and recent advances in the field highlight TQ as an effective therapeutic agent for the suppression of tumor development, growth and metastasis for a wide range of tumors.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Nigella sativa/química , Antineoplásicos/isolamento & purificação , Apoptose , Benzoquinonas/isolamento & purificação , Humanos , Fosfatidilinositol 3-Quinases
13.
J Ayurveda Integr Med ; 7(3): 173-180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27649635

RESUMO

The use of naturally-occurring agents to regulate tumorigenesis is on the rise. Several herbal extracts, pure plant-derived active constituents, and food additives have been reported to possess potent anti-cancer properties and cancer-ameliorating effects. The wide-range anti-cancer effects of Nigella sativa, also known as black seed or black cumin, have been extensively studied using different in vitro and in vivo models. Here, we provide a comprehensive, analytical review of the reported anti-cancer properties of N. sativa seed extracts. This review focuses on analyzing experimental findings related to the ability of N. sativa to exert anti-proliferative, pro-apoptotic, anti-oxidant, cytotoxic, anti-mutagenic, anti-metastatic, and NK cytotoxic activity enhancing effects against various primary cancer cells and cancer cell lines. Moreover, we underline the molecular mechanisms of action and the signal transduction pathways implicated in the suppression of tumorigenesis by N. sativa. The major signaling pathway utilized by N. sativa to manifest its anti-cancer activity is the iNOS signaling pathway. This review underscores the recent developments that highlight an effective therapeutic potential of N. sativa to suppress tumor development, reduce tumor incidence, and ameliorate carcinogenesis. In sum, experimental findings reported in the last two decades strongly suggest that N. sativa fractions could serve, alone or in combination with known chemotherapeutic drugs, as effective agents to control tumor initiation, growth, and metastasis, and hence, treatment of a wide range of cancers.

14.
Int Immunopharmacol ; 28(1): 295-304, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117430

RESUMO

Many herbal products are now used as remedies to treat various infectious and non-infectious conditions. Even though the use of herbs and natural products is much more evident in the Eastern world, their use in Western cultures is continuously increasing. Although the immunomodulatory effects of some herbs have been extensively studied, research related to possible immunomodulatory effects of many herbs and various spices is relatively scarce. Here, we provide a comprehensive review of the immunomodulatory and anti-inflammatory properties of Nigella sativa, also known as black seed or black cumin, and its major active ingredient, thymoquinone (TQ). This review article focuses on analyzing in vitro and in vivo experimental findings that were reported with regard to the ability of N. sativa and TQ to modulate inflammation, cellular and humoral adaptive immune responses, and Th1/Th2 paradigm. The reported capability of N. sativa to augment the cytotoxic activity of natural killer (NK) cells against cancer cells is also emphasized. The molecular and cellular mechanisms underlying such immunomodulatory and anti-inflammatory effects of N. sativa and TQ are highlighted. Moreover, the signal transduction pathways implicated in the immunoregulatory functions of N. sativa and TQ are underscored. Experimental evidence suggests that N. sativa extracts and TQ can potentially be employed in the development of effective therapeutic agents towards the regulation of immune reactions implicated in various infectious and non-infectious conditions including different types of allergy, autoimmunity, and cancer.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzoquinonas/farmacologia , Nigella sativa/química , Extratos Vegetais/farmacologia , Animais , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos
15.
Eur J Nutr ; 54(5): 691-700, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25081501

RESUMO

PURPOSE: Cholesterol clearance by macrophages is a vital process to eliminate excess cholesterol from the body. Internalization of modified cholesterol by macrophages triggers overexpression of peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα), two transcription factors that are critically involved in macrophage cholesterol efflux. Recent studies demonstrate that oral administration of sesamol derivative (INV-403) and sesame oil leads to a significant attenuation of atherosclerosis in Watanabe heritable hyperlipidemic rabbits and LDLR(-/-) mice, respectively. However, the exact molecular mechanisms underlying such anti-atherogenic effects remain largely unrevealed. METHODS: Luciferase reporter assays were performed to assess the effects of sesamol and sesame oil on PPARγ1 and LXRα gene expression. The potential of sesamol and sesame oil to modulate cholesterol efflux was evaluated using (3)H-cholesterol efflux assays. RESULTS: Sesamol and sesame oil treatments lead to a significant up-regulation of PPARγ1 and LXRα expression and transcriptional activity in a MAPK-dependent manner. Importantly, primary macrophages display a significantly enhanced cholesterol efflux potential upon treatment with sesamol and sesame oil, and this stimulatory effect is mediated by MAPK signaling. CONCLUSIONS: Our findings suggest that the previously reported anti-atherogenic effects of sesamol and sesame oil could be attributed, at least in part, to enhanced PPARγ1 and LXRα expression and transcriptional activity leading to improved macrophage cholesterol efflux. Our study is novel in elucidating the molecular and cellular mechanisms underlying the protective effects of sesamol and sesame oil against atherosclerosis.


Assuntos
Benzodioxóis/farmacologia , Colesterol/metabolismo , Receptores Nucleares Órfãos/metabolismo , PPAR gama/metabolismo , Fenóis/farmacologia , Óleo de Gergelim/farmacologia , Sesamum/química , Animais , Células CHO , Cricetulus , Hiperlipidemias/tratamento farmacológico , Receptores X do Fígado , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/genética , PPAR gama/genética , Coelhos , Ativação Transcricional , Regulação para Cima
16.
J Nanosci Nanotechnol ; 14(7): 4757-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757945

RESUMO

In the last decade, gold and silver nanomaterials have received considerable attention due to their attractive electronic and chemical properties and their potential applications in the development of new technologies. Recent advances in the study of various gold and silver nanomaterials have led to their utilization in a number of very important applications including biosensing, diagnostic imaging, and cancer diagnosis and therapy. This review surveys the various synthetic methods of gold and silver nanomaterials. Recent experimental studies focusing on the use of gold and silver nanomaterials in catalysis, food industry, and environmental conservation are also reviewed. This review also highlights the advantages of gold and silver nanomaterials in the development of fluorescence biosensors, glucose biosensors, nucleic acids-based biosensors, and protein-based biosensors. Moreover, the potent in vitro and in vivo anti-microbial and cyto-genotoxic effects of various gold and silver nanomaterials are underlined. Finally, recent advances in the employment of gold and silver nanomaterials as effective drug delivery vehicles and promising cancer therapeutic agents are summarized. Despite their use in remediating numerous medical and health-related conditions, the efficacy and safety of many gold and silver nanomaterials is still under some scrutiny. Needless to say, researchers are facing many challenges and obstacles in their ample attempts to synthesize nanomaterials that are relatively easy to design, inexpensive to fabricate, and effective in treating various diseases, but at the same time display a very low, if any, toxicity to the body. Future investigations should aim at overcoming such challenges in an attempt to design nanomaterials that will prove to be useful in diagnosing and treating life-threatening diseases while ensuring a high degree of efficacy and safety.


Assuntos
Ouro/química , Nanopartículas Metálicas/uso terapêutico , Imagem Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Prata/química , Animais , Cristalização/métodos , Ouro/uso terapêutico , Humanos , Nanopartículas Metálicas/química , Prata/uso terapêutico
17.
J Biol Chem ; 287(46): 39171-81, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22995915

RESUMO

Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.


Assuntos
Carboxipeptidases/genética , Carboxipeptidases/fisiologia , Proteínas Hedgehog/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Animais , Transplante de Medula Óssea , Linhagem Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Hiperplasia , Inflamação , Macrófagos/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
18.
PLoS One ; 6(11): e27795, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114697

RESUMO

Adipocyte enhancer binding protein 1 (AEBP1) is a multifunctional protein that negatively regulates the tumor suppressor PTEN and IκBα, the inhibitor of NF-κB, through protein-protein interaction, thereby promoting cell survival and inflammation. Mice homozygous for a disrupted AEBP1 gene developed to term but showed defects in growth after birth. AEBP1(-/-) females display lactation defect, which results in the death of 100% of the litters nursed by AEBP1(-/-) dams. Mammary gland development during pregnancy appears normal in AEBP1(-/-) dams; however these mice exhibit expansion of the luminal space and the appearance of large cytoplasmic lipid droplets (CLDs) in the mammary epithelial cells at late pregnancy and parturition, which is a clear sign of failed secretory activation, and accumulation of milk proteins in the mammary gland, presumably reflecting milk stasis following failed secretory activation. Eventually, AEBP1(-/-) mammary gland rapidly undergoes involution at postpartum. Stromal restoration of AEBP1 expression by transplanting wild-type bone marrow (BM) cells is sufficient to rescue the mammary gland defect. Our studies suggest that AEBP1 is critical in the maintenance of normal tissue architecture and function of the mammary gland tissue and controls stromal-epithelial crosstalk in mammary gland development.


Assuntos
Carboxipeptidases/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Leite/química , Proteínas Repressoras/fisiologia , Animais , Western Blotting , Transplante de Medula Óssea , Células Epiteliais/citologia , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Gravidez
19.
Mol Med ; 17(9-10): 1056-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687917

RESUMO

Atherogenesis is a long-term process that involves inflammatory response coupled with metabolic dysfunction. Foam cell formation and macrophage inflammatory response are two key events in atherogenesis. Adipocyte enhancer-binding protein 1 (AEBP1) has been shown to impede macrophage cholesterol efflux, promoting foam cell formation, via peroxisome proliferator-activated receptor (PPAR)-γ1 and liver X receptor α (LXRα) downregulation. Moreover, AEBP1 has been shown to promote macrophage inflammatory responsiveness by inducing nuclear factor (NF)-κB activity via IκBα downregulation. Lipopolysaccharide (LPS)-induced suppression of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, has been shown to be mediated by AEBP1. Herein, we showed that AEBP1-transgenic mice (AEBP1(TG)) with macrophage-specific AEBP1 overexpression exhibit hyperlipidemia and develop atherosclerotic lesions in their proximal aortas. Consistently, ablation of AEBP1 results in significant attenuation of atherosclerosis (males: 3.2-fold, P = 0.001 [en face]), 2.7-fold, P = 0.0004 [aortic roots]; females: 2.1-fold, P = 0.0026 [en face], 1.7-fold, P = 0.0126 [aortic roots]) in the AEBP1(-/-)/low-density lipoprotein receptor (LDLR )(-/-) double-knockout (KO) mice. Bone marrow (BM) transplantation experiments further revealed that LDLR (-/-) mice reconstituted with AEBP1(-/-)/LDLR (-/-) BM cells (LDLR (-/-)/KO-BM chimera) display significant reduction of atherosclerosis lesions (en face: 2.0-fold, P = 0.0268; aortic roots: 1.7-fold, P = 0.05) compared with control mice reconstituted with AEBP1(+/+)/LDLR (-/-) BM cells (LDLR (-/-)/WT-BM chimera). Furthermore, transplantation of AEBP1(TG) BM cells with the normal apolipoprotein E (ApoE) gene into ApoE (-/-) mice (ApoE (-/-)/TG-BM chimera) leads to significant development of atherosclerosis (males: 2.5-fold, P = 0.0001 [en face], 4.7-fold, P = 0.0001 [aortic roots]; females: 1.8-fold, P = 0.0001 [en face], 3.0-fold, P = 0.0001 [aortic roots]) despite the restoration of ApoE expression. Macrophages from ApoE (-/-)/TG-BM chimeric mice express reduced levels of PPARγ1, LXRα, ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) and increased levels of the inflammatory mediators interleukin (IL)-6 and tumor necrosis factor (TNF)-α compared with macrophages of control chimeric mice (ApoE (-/-)/NT-BM ) that received AEBP1 nontransgenic (AEBP1(NT) ) BM cells. Our in vivo experimental data strongly suggest that macrophage AEBP1 plays critical regulatory roles in atherogenesis, and it may serve as a potential therapeutic target for the prevention or treatment of atherosclerosis.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Carboxipeptidases/metabolismo , Receptores de LDL/metabolismo , Proteínas Repressoras/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/genética , Carboxipeptidases/genética , Colesterol/metabolismo , Dieta Aterogênica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Feminino , Hiperlipidemias/etiologia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Imuno-Histoquímica , Receptores X do Fígado , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Nucleares Órfãos/metabolismo , PPAR gama/metabolismo , Receptores de LDL/genética , Proteínas Repressoras/genética , Fatores Sexuais
20.
J Ethnopharmacol ; 131(2): 268-75, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20600757

RESUMO

AIM OF THE STUDY: Nigella sativa, also known as blackseed, has long been used in traditional medicine for treating various conditions related to the respiratory and gastrointestinal systems as well as different types of cancers. In this study, the potential immunomodulatory effects of Nigella sativa are investigated in light of splenocyte proliferation, macrophage function, and NK anti-tumor activity using BLAB/c and C57/BL6 primary cells. MATERIALS AND METHODS: Splenocyte proliferation was assessed by [(3)H]-thymidine incorporation. Griess assay was performed to evaluate NO production by macrophages. ELISA was performed to measure the level of cytokines secreted by splenocytes and macrophages. NK cytotoxic activity against YAC-1 tumor cells was examined by JAM assay. RESULTS: We demonstrate that the aqueous extract of Nigella sativa significantly enhances splenocyte proliferation in a dose-responsive manner. In addition, the aqueous extract of Nigella sativa favors the secretion of Th2, versus Th1, cytokines by splenocytes. The secretion of IL-6, TNFalpha, and NO; key pro-inflammatory mediators, by primary macrophages is significantly suppressed by the aqueous extract of Nigella sativa, indicating that Nigella sativa exerts anti-inflammatory effects in vitro. Finally, experimental evidence indicates that the aqueous extract of Nigella sativa significantly enhances NK cytotoxic activity against YAC-1 tumor cells, suggesting that the documented anti-tumor effects of Nigella sativa may be, at least in part, attributed to its ability to serve as a stimulant of NK anti-tumor activity. CONCLUSIONS: Our data present Nigella sativa as a traditionally used herb with potent immunomodulatory, anti-inflammatory, and anti-tumor effects. We anticipate that Nigella sativa ingredients may be employed as effective therapeutic agents in the regulation of diverse immune reactions implicated in various conditions and diseases such as cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fatores Imunológicos/farmacologia , Nigella , Extratos Vegetais/farmacologia , Baço/citologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Fatores Imunológicos/uso terapêutico , Mediadores da Inflamação/metabolismo , Marcação por Isótopo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Sementes , Baço/efeitos dos fármacos , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA