Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(13): 1830-1843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088874

RESUMO

The present study was performed to assess Ni-immobilization and the phytoremediation potential of sunflower by the application of quinoa stalks biochar (QSB) and its magnetic nanocomposite (MQSB). The QSB and MQSB were characterized with FTIR, SEM, EDX, and XRD to get an insight of their surface properties. Three-week-old seedlings of sunflower were transplanted to soil spiked with Ni (0, 15, 30, 60, 90 mg kg-1), QSB and MQSB (0, 1, and 2%) in the wire house under natural conditions. The results showed that increasing Ni levels inhibited sunflower growth and yield due to the high production of reactive oxygen species (ROS) and lipid peroxidation. Enzyme activities like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POX) also increased as Ni levels increased. However, the application of QSB and MQSB reduced Ni uptake, root-shoot, and shoot-seed translocation and decreased the generation of ROS, and lowered the activity of SOD, CAT, APX, and POX, leading to improved growth and yield, especially with MQSB. This was verified through SEM, EDX, XRD, and FTIR. It can be concluded that QSB and MQSB can effectively enhance Ni-tolerance in sunflowers and mitigate oxidative stress and human health risks.


The article focuses on enhancing the phytoremediation remediation potential of Helianthus annuus by using the quinoa stalks biochar (QSB) and magnetic quinoa stalks biochar (MQSB) by immobilization of Ni in soil and ultimately attenuation of oxidative stress in plants and human health risk. Iron enrichment of biochar improves the surface characteristics (surface area, functional groups, porosity, etc.) which help to immobilize metals ions. To the best of our knowledge, QSB and MQSB has never been used before to study the Ni dynamics and for enhancing sunflower phytoremediation potential.


Assuntos
Chenopodium quinoa , Helianthus , Poluentes do Solo , Humanos , Níquel/farmacologia , Helianthus/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Chenopodium quinoa/metabolismo , Ferro , Biodegradação Ambiental , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Poluentes do Solo/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia
2.
Microbiol Res ; 216: 56-69, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269857

RESUMO

Plant growth promoting rhizobacteria (PGPR) are capable to increase the growth and yield of crops in eco-friendly and sustainable manner. To evaluate the response of sunflower towards inoculation with PGPR, a sunflower root associated bacterium AF-54 isolated from Diyar Gali Himalayan Mountain region, Azad Jammu and Kashmir (AJK), identified as Pseudomonas sp. by 16S rRNA sequence analysis and was characterized using polyphasic approach. The bacterium produced 23.9 µgmL-1 indole-3-acetic acid in tryptophan-supplemented medium, showed 44.28 nmoles mg-1 protein h-1 nitrogenase activity through acetylene reduction assay and released 48.80 µg mL-1 insoluble phosphorus in Pikovskaya's broth. During P-solubilization, the pH of the Pikovskaya's medium decreased from 7 to 3.04 due to the production of acetic acid, malic acid and gluconic acid. Pseudomonas sp. AF-54 showed metabolic versatility by utilizing 79 carbon sources from BIOLOG GN2 plates and resistance to many antibiotics. Furthermore, it inhibited the growth of Fusarium oxysporum in dual culture assay. To evaluate the plant-inoculation response, series of experiments conducted in hydroponic, sterilized soil and fields at AJK, and Faisalabad where inoculated plants with reduced fertilizer showed a significant increase in growth, yield, oil contents and achene NP uptake as compared to non-inoculated control. AF-54 showed extensive root colonization in sterilized and non-sterile conditions documented through yfp-labeling and fluorescent in situ hybridization coupled with confocal laser scanning microscopy. This study concludes that the Pseudomonas sp. strain AF-54 containing multiple plant growth promoting traits can be a potential candidate for biofertilizer production to enhance sunflower crop yield with reduced application of chemical (NP) fertilizers.


Assuntos
Fertilizantes , Helianthus/crescimento & desenvolvimento , Helianthus/microbiologia , Desenvolvimento Vegetal , Pseudomonas/isolamento & purificação , Pseudomonas/fisiologia , Microbiologia do Solo , Antifúngicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Produtos Agrícolas , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio , Paquistão , Fenótipo , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA