Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6945, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907528

RESUMO

Enveloped viruses assemble and bud from the host cell membranes. Any role of cortical actin in these processes have often been a source of debate. Here, we assessed if cortical actin was involved in HIV-1 assembly in infected CD4 T lymphocytes. Our results show that preventing actin branching not only increases HIV-1 particle release but also the number of individual HIV-1 Gag assembly clusters at the T cell plasma membrane. Indeed, in infected T lymphocytes and in in vitro quantitative model systems, we show that HIV-1 Gag protein prefers areas deficient in F-actin for assembling. Finally, we found that the host factor Arpin, an inhibitor of Arp2/3 branched actin, is recruited at the membrane of infected T cells and it can associate with the viral Gag protein. Altogether, our data show that, for virus assembly and particle release, HIV-1 prefers low density of cortical actin and may favor local actin debranching by subverting Arpin.


Assuntos
Actinas , HIV-1 , Actinas/metabolismo , HIV-1/metabolismo , Montagem de Vírus , Produtos do Gene gag/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Membrana Celular/metabolismo , Proteínas Virais/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
2.
mBio ; 13(1): e0217721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012346

RESUMO

Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αMß2 or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. IMPORTANCE In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Cricetinae , Animais , Humanos , Feminino , Antígeno de Macrófago 1/metabolismo , HIV-1/metabolismo , Cricetulus , Células Epiteliais/microbiologia , Células CHO , Transcitose , Polissacarídeos/metabolismo
3.
Cell Rep ; 35(6): 109103, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979627

RESUMO

Persistence of HIV through integration into host DNA in CD4+ T cells presents a major barrier to virus eradication. Viral integration may be curtailed when CD8+ T cells are triggered to kill infected CD4+ T cells through recognition of histocompatibility leukocyte antigen (HLA) class I-bound peptides derived from incoming virions. However, this has been reported only in individuals with "beneficial" HLA alleles that are associated with superior HIV control. Through interrogation of the pre-integration immunopeptidome, we obtain proof of early presentation of a virion-derived HLA-A∗02:01-restricted epitope, FLGKIWPSH (FH9), located in Gag Spacer Peptide 2 (SP2). FH9-specific CD8+ T cell responses are detectable in individuals with primary HIV infection and eliminate HIV-infected CD4+ T cells prior to virus production in vitro. Our data show that non-beneficial HLA class I alleles can elicit an effective antiviral response through early presentation of HIV virion-derived epitopes and also demonstrate the importance of SP2 as an immune target.


Assuntos
Antivirais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Peptídeos/metabolismo , Vírion/imunologia , Antivirais/farmacologia , Humanos
5.
Retrovirology ; 15(1): 23, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471854

RESUMO

Cryo-electron microscopy has undergone a revolution in recent years and it has contributed significantly to a number of different areas in biological research. In this manuscript, we will describe some of the recent advancements in cryo-electron microscopy focussing on the advantages that this technique can bring rather than on the technology. We will then conclude discussing how the field of retrovirology has benefited from cryo-electron microscopy.


Assuntos
Microscopia Crioeletrônica , Retroviridae/fisiologia , Retroviridae/ultraestrutura , Animais , Microscopia Crioeletrônica/métodos , Humanos , Imageamento Tridimensional , Vírion/ultraestrutura
6.
PLoS Pathog ; 13(2): e1006221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28222188

RESUMO

The interactions that occur during HIV Pr55Gag oligomerization and genomic RNA packaging are essential elements that facilitate HIV assembly. However, mechanistic details of these interactions are not clearly defined. Here, we overcome previous limitations in producing large quantities of full-length recombinant Pr55Gag that is required for isothermal titration calorimetry (ITC) studies, and we have revealed the thermodynamic properties of HIV assembly for the first time. Thermodynamic analysis showed that the binding between RNA and HIV Pr55Gag is an energetically favourable reaction (ΔG<0) that is further enhanced by the oligomerization of Pr55Gag. The change in enthalpy (ΔH) widens sequentially from: (1) Pr55Gag-Psi RNA binding during HIV genome selection; to (2) Pr55Gag-Guanosine Uridine (GU)-containing RNA binding in cytoplasm/plasma membrane; and then to (3) Pr55Gag-Adenosine(A)-containing RNA binding in immature HIV. These data imply the stepwise increments of heat being released during HIV biogenesis may help to facilitate the process of viral assembly. By mimicking the interactions between A-containing RNA and oligomeric Pr55Gag in immature HIV, it was noted that a p6 domain truncated Pr50Gag Δp6 is less efficient than full-length Pr55Gag in this thermodynamic process. These data suggest a potential unknown role of p6 in Pr55Gag-Pr55Gag oligomerization and/or Pr55Gag-RNA interaction during HIV assembly. Our data provide direct evidence on how nucleic acid sequences and the oligomeric state of Pr55Gag regulate HIV assembly.


Assuntos
HIV-1/fisiologia , Precursores de Proteínas/química , RNA Viral/química , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Calorimetria , Cromatografia , Imunoprecipitação , Microscopia Eletrônica , Termodinâmica
7.
Immunol Cell Biol ; 95(5): 478-483, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28045025

RESUMO

Interferon epsilon (IFNɛ) is a type I IFN that is expressed constitutively in the female reproductive tract (FRT), and contributes to protection in models of sexually transmitted infections. Using multiple cell systems, including reporter cell lines and activated peripheral blood lymphocytes (PBLs), we show that recombinant IFNɛ impairs HIV infection at stage(s) post HIV entry and up to the translation of viral proteins. Consistent with this, IFNɛ upregulated a number of host cell restriction factors that block HIV at these stages of the replication cycle. The potency of IFNɛ induction of these HIV restriction factors was comparable to conventional type I IFNs, namely IFNα and IFNß. IFNɛ also significantly reduced the infectivity of progeny virion particles likely by inducing expression of HIV restriction factors, such as IFITM3, which act at that stage of infection. Thus, our data demonstrate that human IFNɛ suppresses HIV replication at multiple stages of infection.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Interferons/metabolismo , Replicação Viral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Infecções por HIV/patologia , Células HeLa , Humanos , Interferon-alfa/metabolismo , Fito-Hemaglutininas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Linfócitos T/virologia , Vírion/efeitos dos fármacos , Vírion/metabolismo , Replicação Viral/efeitos dos fármacos
8.
Sci Rep ; 6: 39332, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008947

RESUMO

The self-assembly of HIV-1 Gag polyprotein at the inner leaflet of the cell host plasma membrane is the key orchestrator of virus assembly. The binding between Gag and the plasma membrane is mediated by specific interaction of the Gag matrix domain and the PI(4,5)P2 lipid (PIP2). It is unknown whether this interaction could lead to local reorganization of the plasma membrane lipids. In this study, using model membranes, we examined the ability of Gag to segregate specific lipids upon self-assembly. We show for the first time that Gag self-assembly is responsible for the formation of PIP2 lipid nanoclusters, enriched in cholesterol but not in sphingomyelin. We also show that Gag mainly partition into liquid-disordered domains of these lipid membranes. Our work strongly suggests that, instead of targeting pre-existing plasma membrane lipid domains, Gag is more prone to generate PIP2/Cholesterol lipid nanodomains at the inner leaflet of the plasma membrane during early events of virus assembly.


Assuntos
Colesterol/metabolismo , HIV-1/fisiologia , Bicamadas Lipídicas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
9.
Viruses ; 8(4): 118, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110814

RESUMO

High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.


Assuntos
HIV-1/genética , Macrófagos/virologia , Mutação , Recombinação Genética , Linfócitos T/virologia , Algoritmos , Linhagem Celular , Células Cultivadas , Evolução Molecular , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Teóricos , Taxa de Mutação , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Replicação Viral
10.
AIDS ; 30(2): 185-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26691546

RESUMO

BACKGROUND: HIV recombination has been estimated in vitro using a variety of approaches, and shows a high rate of template switching per reverse transcription event. In-vivo studies of recombination generally measure the accumulation of recombinant strains over time, and thus do not directly estimate a comparable template switching rate. METHOD: To examine whether the estimated in-vitro template switching rate is representative of the rate that occurs during HIV infection in vivo, we adopted a novel approach, analysing single genome sequences from early founder viruses to study the in-vivo template switching rate in the env region of HIV. RESULTS: We estimated the in-vivo per cycle template switching rate to be between 0.5 and 1.5/1000 nt, or approximately 5-14 recombination events over the length of the HIV genome. CONCLUSION: The in-vivo estimated template switching rate is close to the in-vitro estimated rate found in primary T lymphocytes but not macrophages, which is consistent with the majority of HIV infection occurring in T lymphocytes.


Assuntos
HIV/genética , HIV/fisiologia , Recombinação Genética , Transcrição Reversa , Integração Viral , Humanos , Macrófagos/virologia , Modelos Teóricos , Linfócitos T/virologia
11.
Protein Expr Purif ; 100: 10-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810910

RESUMO

The HIV-1 Gag precursor protein, Pr55(Gag), is a multi-domain polyprotein that drives HIV-1 assembly. The morphological features of HIV-1 suggested Pr55(Gag) assumes a variety of different conformations during virion assembly and maturation, yet structural determination of HIV-1 Pr55(Gag) has not been possible due to an inability to express and to isolate large amounts of full-length recombinant Pr55(Gag) for biophysical and biochemical analyses. This challenge is further complicated by HIV-1 Gag's natural propensity to multimerize for the formation of viral particle (with ∼2500 Gag molecules per virion), and this has led Pr55(Gag) to aggregate and be expressed as inclusion bodies in a number of in vitro protein expression systems. This study reported the production of a recombinant form of HIV-1 Pr55(Gag) using a bacterial heterologous expression system. Recombinant HIV-1 Pr55(Gag) was expressed with a C-terminal His×6 tag, and purified using a combination of immobilized metal affinity chromatography and size exclusion chromatography. This procedure resulted in the production of milligram quantities of high purity HIV-1 Pr55(Gag) that has a mobility that resembles a trimer in solution using size exclusion chromatography analysis. The high quantity and purity of the full length HIV Gag will be suitable for structural and functional studies to further understand the process of viral assembly, maturation and the development of inhibitors to interfere with the process.


Assuntos
Escherichia coli/genética , Infecções por HIV/virologia , HIV-1/genética , Precursores de Proteínas/genética , Precursores de Proteínas/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade/métodos , Expressão Gênica , HIV-1/química , Humanos , Metais/química , Dados de Sequência Molecular , Plasmídeos/genética , Precursores de Proteínas/química , Precursores de Proteínas/ultraestrutura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Solubilidade , Transformação Bacteriana
12.
J Virol ; 88(7): 3837-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24453357

RESUMO

HIV undergoes high rates of mutation and recombination during reverse transcription, but it is not known whether these events occur independently or are linked mechanistically. Here we used a system of silent marker mutations in HIV and a single round of infection in primary T lymphocytes combined with a high-throughput sequencing and mathematical modeling approach to directly estimate the viral recombination and mutation rates. From >7 million nucleotides (nt) of sequences from HIV infection, we observed 4,801 recombination events and 859 substitution mutations (≈1.51 and 0.12 events per 1,000 nt, respectively). We used experimental controls to account for PCR-induced and transfection-induced recombination and sequencing error. We found that the single-cycle virus-induced mutation rate is 4.6 × 10(-5) mutations per nt after correction. By sorting of our data into recombined and nonrecombined sequences, we found a significantly higher mutation rate in recombined regions (P = 0.003 by Fisher's exact test). We used a permutation approach to eliminate a number of potential confounding factors and confirm that mutation occurs around the site of recombination and is not simply colocated in the genome. By comparing mutation rates in recombined and nonrecombined regions, we found that recombination-associated mutations account for 15 to 20% of all mutations occurring during reverse transcription.


Assuntos
Substituição de Aminoácidos , HIV/crescimento & desenvolvimento , HIV/genética , Mutação de Sentido Incorreto , Recombinação Genética , Linfócitos T/virologia , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Teóricos
13.
Viruses ; 5(9): 2235-52, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24051604

RESUMO

The proline repeat motif (PxxP) of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.


Assuntos
Infecções por HIV/enzimologia , HIV-1/fisiologia , Macrófagos/enzimologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Linfócitos T/enzimologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Células Cultivadas , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Macrófagos/virologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-hck/genética , Linfócitos T/virologia , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
14.
Virus Res ; 169(2): 415-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22728444

RESUMO

One of the hallmarks of HIV infection is the rapid development of a genetically complex population (quasispecies) from an initially limited number of infectious particles. Genetic diversity remains one of the major obstacles to eradication of HIV. The viral quasispecies can respond rapidly to selective pressures, such as that imposed by the immune system and antiretroviral therapy, and frustrates vaccine design efforts. Two unique features of retroviral replication are responsible for the unprecedented variation generated during infection. First, mutations are frequently introduced into the viral genome by the error prone viral reverse transcriptase and through the actions of host cellular factors, such as the APOBEC family of nucleic acid editing enzymes. Second, the HIV reverse transcriptase can utilize both copies of the co-packaged viral genome in a process termed retroviral recombination. When the co-packaged viral genomes are genetically different, retroviral recombination can lead to the shuffling of mutations between viral genomes in the quasispecies. This review outlines the stages of the retroviral life cycle where genetic variation is introduced, focusing on the principal mechanisms of mutation and recombination. Understanding the mechanistic origin of genetic diversity is essential to combating HIV.


Assuntos
Variação Genética , HIV-1/genética , Desaminase APOBEC-1 , Citidina Desaminase/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Recombinação Genética , Transcrição Reversa
15.
PLoS One ; 6(2): e17016, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21347302

RESUMO

Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.


Assuntos
Arsenicais/metabolismo , Cisteína , HIV-1/metabolismo , Coloração e Rotulagem/métodos , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HEK293 , HIV-1/enzimologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Especificidade por Substrato
16.
Cell Microbiol ; 12(3): 372-85, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19888989

RESUMO

Gram-negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1-dependent manner to Gram-negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram-negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram-negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF-kappaB and NOD1-dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1-dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice-induced innate and adaptive immune responses via a NOD1-dependent but TLR-independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram-negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.


Assuntos
Células Epiteliais/imunologia , Bactérias Gram-Negativas/imunologia , NF-kappa B/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Peptidoglicano/metabolismo , Vesículas Secretórias/metabolismo , Animais , Feminino , Células HeLa , Helicobacter pylori/imunologia , Humanos , Masculino , Camundongos , Neisseria/imunologia , Peptidoglicano/imunologia , Pseudomonas aeruginosa/imunologia , Vesículas Secretórias/imunologia
18.
PLoS Pathog ; 5(2): e1000311, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19229320

RESUMO

The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)-mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism.


Assuntos
RNA Helicases DEAD-box/metabolismo , HIV-1/metabolismo , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/metabolismo , eIF-2 Quinase/metabolismo , Sítios de Ligação/genética , RNA Helicases DEAD-box/genética , Repetição Terminal Longa de HIV/fisiologia , HIV-1/genética , Humanos , Imunidade Inata , Espectrometria de Massas , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/genética , RNA de Cadeia Dupla/metabolismo , Análise de Sequência de Proteína , Transdução de Sinais , Transcrição Gênica , Vírion/genética , Vírion/metabolismo , eIF-2 Quinase/genética
19.
Nucleic Acids Res ; 36(5): 1578-88, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18216043

RESUMO

The dimerization initiation site (DIS) stem-loop within the HIV-1 RNA genome is vital for the production of infectious virions in T-cell lines but not in primary cells. In comparison to peripheral blood mononuclear cells (PBMCs), which can support the replication of both wild type and HIV-1 DIS RNA mutants, we have found that DIS RNA mutants are up to 100 000-fold less infectious than wild-type HIV-1 in T-cell lines. We have also found that the cell-type-dependent replication of HIV-1 DIS RNA mutants is largely producer cell-dependent, with mutants displaying a greater defect in viral cDNA synthesis when viruses were not derived from PBMCs. While many examples exist of host-pathogen interplays that are mediated via proteins, analogous examples which rely on nucleic acid triggers are limited. Our data provide evidence to illustrate that primary T-lymphocytes rescue, in part, the replication of HIV-1 DIS RNA mutants through mediating the reverse transcription process in a cell-type-dependent manner. Our data also suggest the presence of a host cell factor that acts within the virus producer cells. In addition to providing an example of an RNA-mediated cell-type-dependent block to viral replication, our data also provides evidence which help to resolve the dilemma of how HIV-1 genomes with mismatched DIS sequences can recombine to generate chimeric viral RNA genomes.


Assuntos
HIV-1/genética , RNA Viral/química , Transcrição Reversa , Linfócitos T/virologia , Replicação Viral , Regiões 5' não Traduzidas/química , Sequência de Bases , Linhagem Celular , Células Cultivadas , DNA Complementar/biossíntese , Dimerização , HIV-1/fisiologia , Humanos , Macrófagos/virologia , Dados de Sequência Molecular , Mutação
20.
Curr HIV Res ; 5(1): 69-78, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17266558

RESUMO

The HIV-1 spacer peptide p1 is located in the C-terminus of the Gag polyprotein and separates the nucleocapsid (NC) and p6(Gag). Research centered on p1 has been limited and as yet no function has been ascribed to this spacer peptide. We have previously found that the conserved p1 proline residues (position 7 and 13) are critical for replication in the HIV-1 strain HXB2-BH10. In this study we have focused on the proline rich p1-p6(Gag) C-terminus of HIV-1. We individually examined the role of p1 proline's in multiple strains of HIV-1 and investigated the role of three proline residues in p6(Gag) (P24, P25 and P30). Assessment of the HXB2-BH10 based mutants revealed that Gag-Pol incorporation relative to Gag decreased in the p1 mutant virions, with the double proline mutant the most impaired. Mutating both p1 proline residues was found to abolish infectivity in multiple strains of HIV-1. Independent mutation of the p1 proline at position 7 resulted in a strain-dependent suppression of viral infectivity. This defect correlates with the presence of a tyrosine residue at position 9 of p1 and occurs in the early phase of the HIV-1 replication cycle. The p1 proline residues were found to be functionally distinct from P24, P25 and P30 in p6(Gag). This work affords novel insights into our understanding of the role of p1 in HIV-1 replication.


Assuntos
Produtos do Gene gag/química , HIV-1/patogenicidade , Prolina/química , Sequência de Aminoácidos , Produtos do Gene gag/fisiologia , HIV-1/classificação , Dados de Sequência Molecular , Especificidade da Espécie , Relação Estrutura-Atividade , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA