Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(5): 616-622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38664897

RESUMO

The SpyCatcher/SpyTag system is a protein pair that forms a covalent isopeptide bond without an additional energy supply. The ability to connect fused proteins makes this system an attractive tool for several protein engineering applications. Conditional activation of the SpyCatcher/SpyTag complex formation further expands the use of this system. Here, we evaluated the pH activation of SpyTag using alkoxyaspartic acids in the isopeptide-forming residue. We found that a peptide with an ethoxy group can be activated by hydrolysis under high pH conditions. However, the hydrolysis induces isoaspartate (isoAsp) formation, which is confirmed by an isoAsp-inserted short peptide. We overcame this problem by changing the C-terminal side of the aspartic acid position to Pro, which does not form isoAsp under high pH conditions. The findings of this study provide fundamental knowledge of the synthetic construction of the modified SpyTag peptide.


Assuntos
Ácido Aspártico , Peptídeos , Concentração de Íons de Hidrogênio , Ácido Aspártico/química , Peptídeos/química , Peptídeos/metabolismo , Hidrólise , Engenharia de Proteínas/métodos
2.
N Biotechnol ; 77: 80-89, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467927

RESUMO

Prodrug design is a promising approach for reducing the off-target effects of therapeutic antibodies, particularly bispecific antibodies (bsAbs) that recruit T cells for activation; this design uses masking sequences that inhibit antibody binding until they reach the tumor microenvironment, where they are removed. In this study, we propose PAS, a polypeptide sequence composed of repeated Pro, Ala, and Ser residues, as a universal masking sequence. PAS has no specificity, but can inhibit antibody binding through steric hindrance caused by its large fluid dynamic radius and disordered structure; additionally, its length can be adjusted. We fused PAS to the N-terminus of an anti-CD3 single-chain variable fragment (scFv) and a bsAb, that targets both the epidermal growth factor receptor and CD3, via a recognition sequence cleaved by cancer-related proteases. PAS integration inhibited anti-CD3 scFv binding with higher efficacy than the epitope sequence, and the extent of inhibition was proportional to the length of the PAS sequence. For masked bsAbs, T cell-binding ability, cancer growth inhibition effects, and T cell activation effects were also reduced depending on the length of PAS and were fully restored upon removing PAS sequences using protease. The masking procedure using PAS was successfully applied to another scFv. The provision to adjust the masking effects of PAS by tuning its length, makes PAS fusion a valuable tool for the universal design of prodrug antibodies.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Pró-Fármacos , Anticorpos de Cadeia Única , Humanos , Linfócitos T , Pró-Fármacos/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Sci Rep ; 11(1): 5790, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707468

RESUMO

Antibodies have been widely used for cancer therapy owing to their ability to distinguish cancer cells by recognizing cancer-specific antigens. Epidermal growth factor receptor (EGFR) is a promising target for the cancer therapeutics, against which several antibody clones have been developed and brought into therapeutic use. Another antibody clone, 528, is an antagonistic anti-EGFR antibody, which has been the focus of our antibody engineering studies to develop cancer drugs. In this study, we explored the interaction of 528 with the extracellular region of EGFR (sEGFR) via binding analyses and structural studies. Dot blotting experiments with heat treated sEGFR and surface plasmon resonance binding experiments revealed that 528 recognizes the tertiary structure of sEGFR and exhibits competitive binding to sEGFR with EGF and cetuximab. Single particle analysis of the sEGFR-528 Fab complex via electron microscopy clearly showed the binding of 528 to domain III of sEGFR, the domain to which EGF and cetuximab bind, explaining its antagonistic activity. Comparison between the two-dimensional class average and the cetuximab/sEGFR crystal structure revealed that 528 binds to a site that is shifted from, rather than identical to, the cetuximab epitope, and may exclude known drug-resistant EGFR mutations.


Assuntos
Cetuximab/metabolismo , Epitopos/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Animais , Ligação Competitiva , Células CHO , Cetuximab/química , Cetuximab/ultraestrutura , Cricetulus , Fator de Crescimento Epidérmico/metabolismo , Epitopos/química , Receptores ErbB/ultraestrutura , Temperatura Alta , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
4.
Eur J Med Chem ; 215: 113289, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33611188

RESUMO

The total synthesis of berberine and selected analogues. And their evaluation as amyloid ß (Aß) aggregation inhibitors is described. The key step in the synthesis, the assembly of the berberine framework, was accomplished using an intermolecular Heck reaction. Berberine analog 17 incorporating a tertiary amine moiety showed good anti Aß aggregation activity, water solubility, and almost no toxicity to nerve cells.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Alcaloides de Berberina/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Multimerização Proteica/efeitos dos fármacos , Animais , Alcaloides de Berberina/síntese química , Simulação de Acoplamento Molecular , Células PC12 , Ratos
5.
Bioorg Chem ; 104: 104302, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007741

RESUMO

A structure activity relationship study of cyclocurcumin-derived, diaryl γ-dihydropyrone-based inhibitors of amyloid ß aggregation is described. Optimization of the diaryl γ-dihydropyrone framework and two phenolic rings resulted in the identification of diaryl γ-dihydropyrone type cyclocurcumin analogue AY1511, which exhibited potent anti-amyloid ß aggregation activity (leading to nanorod-like fragments), sufficient water solubility, and low cytotoxicity.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Curcumina/farmacologia , Desenho de Fármacos , Fragmentos de Peptídeos/antagonistas & inibidores , Pironas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Curcumina/síntese química , Curcumina/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Células PC12 , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Pironas/síntese química , Pironas/química , Ratos , Solubilidade , Relação Estrutura-Atividade
6.
Biochemistry ; 59(30): 2782-2787, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32496046

RESUMO

Thioflavin T (ThT) is a popular fluorescent dye for detecting amyloid, a protein aggregate with a ß-sheet-rich structure that causes many neurodegenerative diseases. Despite the dye's popularity, a detailed understanding of its molecular binding mechanism remains elusive. We previously reported a protein model that can bind ThT on a single-layer ß-sheet and revealed that a channel formed by aromatic rings with a confined length enhanced ThT binding. One of the mutants of the model system, 5-YY/LL, showed the highest affinity with a low micromolar dissociation constant. Here, we investigate the residue-specific mechanism of binding of ThT to 5-YY/LL. We introduced tyrosine to phenylalanine and tyrosine to histidine mutations into the channel. The mutants revealed that the fifth position of tyrosine (Y5) is important for binding of ThT. Positive charges introduced by histidine under a low-pH condition at the channel repel the binding of cationic ThT. Furthermore, we found a positive to negative conversion in the vicinity of the binding channel increases ThT fluorescence 4-fold. A detailed understanding of the ThT binding mechanism will enhance our ability to develop amyloid-specific small molecules.


Assuntos
Aminoácidos/metabolismo , Benzotiazóis/química , Benzotiazóis/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Aminoácidos/genética , Sítios de Ligação , Fluorescência , Modelos Moleculares , Mutação/genética , Conformação Proteica em Folha beta
7.
J Biochem ; 167(4): 343-345, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027351

RESUMO

Antibodies can recognize various types of antigens with high specificity and affinity and peptide is one of their major targets. Understanding an antibody's molecular recognition mechanism for peptide is important for developing clones with a higher specificity and affinity. Here, the author reviews recent progresses in flexible peptide recognition by an antibody using several biophysical techniques, including X-ray crystallography, molecular dynamics simulations and calorimetric measurements. A set of two reports highlight the importance of intramolecular hydrogen bonds that form in an unbound flexible state. Such intramolecular hydrogen bonds restrict the fluctuation of the peptide and reduce the conformational entropy, resulting in the destabilization of the unbound state and increasing the binding affinity by increasing the free energy change. These detailed analyses will aid in the antibody design in the future.


Assuntos
Anticorpos/química , Antígenos/química , Peptídeos/química , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Calorimetria , Cristalografia por Raios X , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Peptídeos/imunologia
8.
Biochem Biophys Res Commun ; 523(1): 72-77, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31831177

RESUMO

A bispecific antibody (bsAb) is an emerging class of next-generation biological therapeutics. BsAbs are engineered antibodies possessing dual antigen-binding paratopes in one molecule. The circular backbone topology has never been demonstrated, although an enormous number of bispecific constructs have been proposed. The circular topology is potentially beneficial for fixing the orientation of two paratopes and protection from exopeptidase digestion. We construct herein a circularly connected bispecific VHH, termed cyclobody, using the split-intein circular ligation of peptides and proteins. The constructed cyclobodies are protected from proteolysis with a retained bispecificity. The anti-EGFR × anti-GFP cyclobody can specifically stain EGFR-positive cells with GFP. The anti-EGFR × anti-CD16 cyclobody shows cytotoxic activity against EGFR-positive cancer cells with comparative activity of a tandem VHH construct. Successful demonstration of a new topology for the bispecific antibody will expand the construction strategy for developing antibody-based drugs and reagents.


Assuntos
Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Sítios de Ligação de Anticorpos , Receptores de Antígenos/química , Receptores de Antígenos/imunologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Proteólise
9.
Cytoskeleton (Hoboken) ; 76(9-10): 477-490, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31626391

RESUMO

The interplay between intermediate filaments (IFs) and other cytoskeletal components is important for the integrity and motility of cells. The impact of IF assembly on other components and cell morphology is not yet fully understood. Therefore, we examined the effects of combined desmin and actin assembly on cytoskeletal network arrangement in artificial cell-sized droplets. Fluorescently labeled desmin, with or without actin, was enclosed in droplets prepared with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) using the water-in-oil method. Protein networks were observed using fluorescence microscopy in the presence of 150 mM KCl, 20 mM imidazole-HCl (pH 7.4), 2 mM MgCl2 , and 1 mM adenosine 5'-triphosphate for both desmin and actin assembly. As desmin alone can assemble into filaments within seconds, desmin networks mainly localizing at the inner margins of the droplets were observed within 10 min after assembly initiation. Subsequently, deformations of droplets appeared. Furthermore, a portion of droplets formed desmin-rich protrusions of several micrometers. Notably, actin alone rarely formed protrusions under the same conditions. When 1,2-dioleoyl-sn-glycero-3-phosphocholine was used instead of DOPE, protrusions became less frequent. The combination of desmin and actin increased the number of deformed droplets in which the proteins were considerably colocalized. The assembly process of desmin facilitated colocalization. Atomic force microscopy failed to reveal interactions between the two filament types. These results suggest that the mechanical properties of desmin networks may influence the behavior of actin networks, as well as membrane morphology, possibly reflecting the mechanical function of desmin filaments in muscle cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Técnicas In Vitro , Gotículas Lipídicas/química , Membranas Artificiais , Microscopia de Força Atômica , Microscopia de Fluorescência , Fosfatidiletanolaminas/química , Polimerização , Fatores de Tempo
10.
Chembiochem ; 20(19): 2454-2457, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31094059

RESUMO

During domain swapping, proteins mutually interconvert structural elements to form a di-/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain-swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain-swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small-angle X-ray scattering demonstrated that an extended orientation of domain-swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation.


Assuntos
Peptídeos/química , Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Engenharia de Proteínas , Estrutura Terciária de Proteína
11.
Oncotarget ; 9(17): 13884-13893, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568402

RESUMO

We previously reported a functional humanized bispecific diabody (bsDb) that targeted EGFR and CD3 (hEx3-Db) and enhancement of its cytotoxicity by rearranging the domain order in the V domain. Here, we further dissected the effect of domain order in bsDbs on their cross-linking ability and binding kinetics to elucidate general rules regarding the design of functional bsDbs. Using Ex3-Db as a model system, we first classified the four possible domain orders as anti-parallel (where both chimeric single-chain components are variable heavy domain (VH)-variable light domain (VL) or VL-VH order) and parallel types (both chimeric single-chain components are mixed with VH-VL and VL-VH order). Although anti-parallel Ex3-Dbs could cross-link the soluble target antigens, their cross-linking ability between soluble targets had no correlation with their growth inhibitory effects. In contrast, the binding affinity of one of the two constructs with a parallel-arrangement V domain was particularly low, and structural modeling supported this phenomenon. Similar results were observed with E2x3-Dbs, in which the V region of the anti-EGFR antibody clone in hEx3 was replaced with that of another anti-EGFR clone. Only anti-parallel types showed affinity-dependent cancer inhibitory effects in each molecule, and E2x3-LH (both components in VL-VH order) showed the most intense anti-tumor activity in vitro and in vivo. Our results showed that, in addition to rearranging the domain order of bsDbs, increasing their binding affinity may be an ideal strategy for enhancing the cytotoxicity of anti-parallel constructs and that E2x3-LH is particularly attractive as a candidate next-generation anti-cancer drug.

12.
J Mol Biol ; 426(2): 447-59, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24120682

RESUMO

Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1-2s after mixing. Only in the presence of K(+) that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K(+). Without K(+), a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K(+), a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Thermococcus/enzimologia , Substituição de Aminoácidos , Fluorometria , Chaperoninas do Grupo II/genética , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo
13.
J Biol Chem ; 288(35): 25562-25574, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23867454

RESUMO

A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2'-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.


Assuntos
Proteínas de Bactérias/química , RNA Bacteriano/química , RNA de Transferência/química , Thermus thermophilus/química , tRNA Metiltransferases/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
14.
PLoS One ; 8(5): e64176, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734192

RESUMO

Group II chaperonins play important roles in protein homeostasis in the eukaryotic cytosol and in Archaea. These proteins assist in the folding of nascent polypeptides and also refold unfolded proteins in an ATP-dependent manner. Chaperonin-mediated protein folding is dependent on the closure and opening of a built-in lid, which is controlled by the ATP hydrolysis cycle. Recent structural studies suggest that the ring structure of the chaperonin twists to seal off the central cavity. In this study, we demonstrate ATP-dependent dynamics of a group II chaperonin at the single-molecule level with highly accurate rotational axes views by diffracted X-ray tracking (DXT). A UV light-triggered DXT study with caged-ATP and stopped-flow fluorometry revealed that the lid partially closed within 1 s of ATP binding, the closed ring subsequently twisted counterclockwise within 2-6 s, as viewed from the top to bottom of the chaperonin, and the twisted ring reverted to the original open-state with a clockwise motion. Our analyses clearly demonstrate that the biphasic lid-closure process occurs with unsynchronized closure and a synchronized counterclockwise twisting motion.


Assuntos
Trifosfato de Adenosina/química , Proteínas Arqueais/química , Chaperoninas do Grupo II/química , Raios X , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Proteínas Arqueais/metabolismo , Chaperoninas do Grupo II/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Movimento (Física) , Ligação Proteica , Conformação Proteica/efeitos dos fármacos
15.
J Biol Chem ; 288(20): 14408-14416, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23580643

RESUMO

Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and ß2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane.


Assuntos
Apoptose , Lactalbumina/farmacologia , Neoplasias/tratamento farmacológico , Ácidos Oleicos/farmacologia , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Cabras , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Neoplasias/patologia , Ligação Proteica
16.
J Mol Biol ; 410(2): 343-56, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21620859

RESUMO

Although allosteric transitions of GroEL by MgATP(2)(-) have been widely studied, the initial bimolecular step of MgATP(2-) binding to GroEL remains unclear. Here, we studied the equilibrium and kinetics of MgATP(2)(-) binding to a variant of GroEL, in which Tyr485 was replaced by tryptophan, via isothermal titration calorimetry (ITC) and stopped-flow fluorescence spectroscopy. In the absence of K(+) at 4-5 °C, the allosteric transitions and the subsequent ATP hydrolysis by GroEL are halted, and hence, the stopped-flow fluorescence kinetics induced by rapid mixing of MgATP(2)(-) and the GroEL variant solely reflected MgATP(2)(-) binding, which was well represented by bimolecular noncooperative binding with a binding rate constant, k(on), of 9.14×10(4) M(-1) s(-1) and a dissociation rate constant, k(off), of 14.2 s(-1), yielding a binding constant, K(b) (=k(on)/k(off)), of 6.4×10(3) M(-1). We also successfully performed ITC to measure binding isotherms of MgATP(2)(-) to GroEL and obtained a K(b) of 9.5×10(3) M(-1) and a binding stoichiometric number of 6.6. K(b) was thus in good agreement with that obtained by stopped-flow fluorescence. In the presence of 10-50 mM KCl, the fluorescence kinetics consisted of three to four phases (the first fluorescence-increasing phase, followed by one or two exponential fluorescence-decreasing phases, and the final slow fluorescence-increasing phase), and comparison of the kinetics in the absence and presence of K(+) clearly demonstrated that the first fluorescence-increasing phase corresponds to bimolecular MgATP(2)(-) binding to GroEL. The temperature dependence of the kinetics indicated that MgATP(2)(-) binding to GroEL was activation-controlled with an activation enthalpy as large as 14-16 kcal mol(-1).


Assuntos
Trifosfato de Adenosina/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Apoproteínas/química , Apoproteínas/metabolismo , Chaperonina 60/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Hidrólise , Ligantes , Modelos Moleculares , Ligação Proteica , Soluções , Especificidade por Substrato
17.
Proc Natl Acad Sci U S A ; 107(8): 3469-74, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133689

RESUMO

Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-beta proteins. The cross-beta motif is formed from the lamination of successive beta-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-beta has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-beta's recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-beta structures of fibril-forming peptides, we identified rows of hydrophobic residues ("ladders") running across beta-strands of each beta-sheet layer as a minimal component of the cross-beta motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-beta peptide onto a large beta-sheet protein formed a dimeric protein with a cross-beta architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-beta motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-beta structure and expanding the scope of protein design.


Assuntos
Peptídeos/química , Engenharia de Proteínas/métodos , Água/química , Peptídeos beta-Amiloides/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Solubilidade
18.
J Biol Chem ; 285(12): 9018-29, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20053984

RESUMO

Transfer RNA (Gm18) methyltransferase (TrmH) catalyzes methyl transfer from S-adenosyl-l-methionine to a conserved G18 in tRNA. We investigated the recognition mechanism of Thermus thermophilus TrmH for its guanosine target. Thirteen yeast tRNA(Phe) mutant transcripts were prepared in which the modification site and/or other nucleotides in the D-loop were substituted by dG, inosine, or other nucleotides. We then conducted methyl transfer kinetic studies, gel shift assays, and inhibition experiments using these tRNA variants. Sites of methylation were confirmed with RNA sequencing or primer extension. Although the G18G19 sequence is not essential for methylation by TrmH, disruption of G18G19 severely reduces the efficiency of methyl transfer. There is strict recognition of guanosine by TrmH, in that methylation occurs at the adjacent G19 when the G18 is replaced by dG or adenosine. The fact that TrmH methylates guanosine in D-loops from 4 to 12 nucleotides in length suggests that selection of the position of guanosine within the D-loop is relatively flexible. Our studies also demonstrate that the oxygen 6 atom of the guanine base is a positive determinant for TrmH recognition. The recognition process of TrmH for substrate is inducible and product-inhibited, in that tRNAs containing Gm18 are excluded by TrmH. In contrast, substitution of G18 with dG18 results in the formation of a more stable TrmH-tRNA complex. To address the mechanism, we performed the stopped-flow pre-steady state kinetic analysis. The result clearly showed that the binding of TrmH to tRNA is composed of at least three steps, the first bi-molecular binding and the subsequent two uni-molecular induced-fit processes.


Assuntos
RNA de Transferência/metabolismo , Thermus thermophilus/enzimologia , tRNA Metiltransferases/química , Sequência de Bases , Cromatografia em Camada Fina/métodos , Cristalografia por Raios X/métodos , Metilação de DNA , Primers do DNA/química , Guanosina/química , Cinética , Metilação , Conformação Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica
19.
J Mol Biol ; 392(5): 1221-31, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19646997

RESUMO

We have established a new protein-engineering strategy termed "directed domain-interface evolution" that generates a binding site by linking two protein domains and then optimizing the interface between them. Using this strategy, we have generated synthetic two-domain "affinity clamps" using PDZ and fibronectin type III (FN3) domains as the building blocks. While these affinity clamps all had significantly higher affinity toward a target peptide than the underlying PDZ domain, two distinct types of affinity clamps were found in terms of target specificity. One type conserved the specificity of the parent PDZ domain, and the other increased the specificity dramatically. Here, we characterized their specificity profiles using peptide phage-display libraries and scanning mutagenesis, which suggested a significantly enlarged recognition site of the high-specificity affinity clamps. The crystal structure of a high-specificity affinity clamp showed extensive contacts with a portion of the peptide ligand that is not recognized by the parent PDZ domain, thus rationalizing the improvement of the specificity of the affinity clamp. A comparison with another affinity clamp structure showed that, although both had extensive contacts between PDZ and FN3 domains, they exhibited a large offset in the relative position of the two domains. Our results indicate that linked domains could rapidly fuse and evolve as a single functional module, and that the inherent plasticity of domain interfaces allows for the generation of diverse active-site topography. These attributes of directed domain-interface evolution provide facile means to generate synthetic proteins with a broad range of functions.


Assuntos
Evolução Molecular Direcionada , Fibronectinas/química , Fibronectinas/metabolismo , Domínios PDZ/genética , Peptídeos/metabolismo , Cristalografia por Raios X , Fibronectinas/genética , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Sensibilidade e Especificidade
20.
J Mol Biol ; 385(4): 1052-63, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19038267

RESUMO

A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a "peptide self-assembly mimic" (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimic a segment of beta-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM beta-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the beta-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more beta-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Tiazóis/metabolismo , Benzotiazóis , Sítios de Ligação , Cristalografia por Raios X , Modelos Biológicos , Modelos Moleculares , Estrutura Secundária de Proteína , Propriedades de Superfície , Tiazóis/química , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA