Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Technol Biotechnol ; 59(2): 127-136, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316274

RESUMO

RESEARCH BACKGROUND: Antioxidants are important compounds present at low concentrations that inhibit oxidation processes. Due to the side effects of synthetic antioxidants, research interest has increased considerably towards finding natural sources of antioxidants that can replace the synthetic ones. The emergence and spread of antibiotic resistance require the development of new drugs or some potential sources of novel medicine. This work aims to extract the secondary metabolites of Saccharomyces cerevisiae using ethyl acetate as a solvent and to determine the antioxidant and antimicrobial activities of these extracted metabolites. EXPERIMENTAL APPROACH: The antioxidant activity of the secondary metabolites of S. cerevisiae were determined using DPPH, ABTS and FRAP assays. Furthermore, the antimicrobial potential of the ethyl acetate extract of S. cerevisiae against Cutibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis was assessed. RESULTS AND CONCLUSION: Five out of 13 of the extracted secondary metabolites were identified as antioxidants. The antioxidant activity of the S. cerevisiae extract exhibited relatively high IC50 of 455.26 and 294.51 µg/mL for DPPH and ABTS respectively, while the obtained FRAP value, expressed as ascorbic acid equivalents, was 44.40 µg/mL. Moreover, the extract had a significant antibacterial activity (p<0.05) against Staphylococcus aureus and Staphylococcus epidermidis at the concentrations of 100 and 200 mg/mL, respectively. However, no inhibitory effect was observed against Cutibacterium acnes as the extract was only effective against the bacterium at the concentrations of 300 and 400 mg/mL (inhibition zones ranging from 9.0±0.0 to 9.3±0.6) respectively (p<0.05). Staphylococcus aureus was highly sensitive to the extract, with a MIC value of 18.75 mg/mL. NOVELTY AND SCIENTIFIC CONTRIBUTION: This report confirmed the efficacy of the secondary metabolites of S. cerevisiae as a natural source of antioxidants and antimicrobials and suggested the possibility of employing them in drugs for the treatment of infectious diseases caused by the tested microorganisms.

2.
Curr Drug Targets ; 21(13): 1326-1343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32564749

RESUMO

Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.


Assuntos
Bactérias/metabolismo , Sideróforos/biossíntese , Sideróforos/fisiologia , Animais , Antibacterianos/química , Interações Hospedeiro-Patógeno , Humanos , Ferro/metabolismo , Lipocalina-2/metabolismo , Mitofagia , Sideróforos/química , Sideróforos/uso terapêutico , beta-Lactamas/química
3.
Curr Microbiol ; 74(1): 132-144, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27785553

RESUMO

Microbial-derived natural products have functional and structural diversity and complexity. For several decades, they have provided the basic foundation for most drugs available to modern medicine. Microbial-derived natural products have wide-ranging applications, especially as chemotherapeutics for various diseases and disorders. By exploring distinct microorganisms in different environments, small novel bioactive molecules with unique functionalities and biological or biomedical significance can be identified. Aquatic environments, such as oceans or seas, are considered to be sources of abundant novel bioactive compounds. Studies on marine microorganisms have revealed that several bioactive compounds extracted from marine algae and invertebrates are eventually generated by their associated bacteria. These findings have prompted intense research interest in discovering novel compounds from marine microorganisms. Natural products derived from Dermacoccus exhibit antibacterial, antitumor, antifungal, antioxidant, antiviral, antiparasitic, and eventually immunosuppressive bioactivities. In this review, we discussed the diversity of secondary metabolites generated by genus Dermacoccus with respect to their chemical structure, biological activity, and origin. This brief review highlights and showcases the pivotal importance of Dermacoccus-derived natural products and sheds light on the potential venues of discovery of new bioactive compounds from marine microorganisms.


Assuntos
Actinobacteria/química , Produtos Biológicos/farmacologia , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Invertebrados/microbiologia
4.
Curr Drug Metab ; 18(3): 207-224, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27928943

RESUMO

BACKGROUND: Vitamin D, a molecular precursor of the potent steroid hormone calcitriol, has crucial functions and roles in physiology and pathophysiology. Tellingly, calcitriol has been shown to regulate various cellular signalling networks and cascades that have crucial role in cancer biology and diagnostics. Mounting lines of evidences from previous clinical and preclinical investigations indicate that the deficiency of vitamin D may contribute to the carcinogenesis risk. Concomitantly, recent reports suggested that significant reduction in the cancer occurrence and progression is more likely to appear after vitamin D supplementation. Furthermore, a pivotal role functioned by vitamin D in cardiovascular physiology indicates that the deficiency of vitamin D is significantly correlated with enhanced prevalence of stroke, hypertension and myocardial infarction. Notably, vitamin D status is more likely to be used as a lifestyle biomarker, since poor and unhealthy lifestyles are correlated with the deficiency of vitamin D, a feature which may result in cardiovascular complications. Moreover, recent reports revealed that the effect of vitamin D is to cover not only cardiovascular system but also skeletal system. OBJECTIVE: Herein, we are highlighting the recent knowledge of vitamin D roles and functions with respect to pathophysiological disorders such as cancer, cardiovascular diseases, rheumatoid arthritis (RA) and debate the potential avails of vitamin D on slowing cancer, cardiovascular disease and RA progression. CONCLUSION: The findings of this review confirm that the importance of vitamin D metabolites or analogues which can provide a helpful platform to target some kinds of cancer, particularly when used in combination with existing therapies. Moreover, the correlation between vitamin D deficiencies with cardiovascular diseases and rheumatoid arthritis (RA) progression might suggest a pivotal role of vitamin D in either initiation or progression of these diseases.


Assuntos
Vitamina D/fisiologia , Vitaminas/fisiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Humanos , Neoplasias/fisiopatologia , Vitamina D/imunologia , Vitamina D/metabolismo , Vitaminas/imunologia , Vitaminas/metabolismo
5.
3 Biotech ; 6(1): 4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330073

RESUMO

Fungi are important natural product sources that have enormous potential for the production of novel compounds for use in pharmacology, agricultural applications and industry. Compared with other natural sources such as plants, fungi are highly diverse but understudied. However, research on Cladosporium cladosporioides revealed the existence of bioactive products such as p-methylbenzoic acid, ergosterol peroxide (EP) and calphostin C as well as enzymes including pectin methylesterase (PME), polygalacturonase (PG) and chlorpyrifos hydrolase. p-Methylbenzoic acid has ability to synthesise 1,5-benzodiazepine and its derivatives, polyethylene terephthalate and eicosapentaenoic acid. EP has anticancer, antiangiogenic, antibacterial, anti-oxidative and immunosuppressive properties. Calphostin C inhibits protein kinase C (PKC) by inactivating both PKC-epsilon and PKC-alpha. In addition, calphostin C stimulates apoptosis in WEHI-231 cells and vascular smooth muscle cells. Based on the stimulation of endoplasmic reticulum stress in some types of cancer, calphostin C has also been evaluated as a potential photodynamic therapeutic agent. Methylesterase (PME) and PG have garnered attention because of their usage in the food processing industry and significant physiological function in plants. Chlorpyrifos, a human, animal and plant toxin, can be degraded and eliminated by chlorpyrifos hydrolase.

6.
Appl Biochem Biotechnol ; 178(5): 900-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26547852

RESUMO

L-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of L-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of L-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects.


Assuntos
Asparaginase/isolamento & purificação , Aminoácidos/metabolismo , Asparaginase/química , Asparaginase/metabolismo , Asparaginase/farmacologia , Bactérias/enzimologia , Clorófitas/enzimologia , Indústria Alimentícia , Fungos/enzimologia , Conformação Proteica
7.
Curr Drug Metab ; 17(2): 156-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26651980

RESUMO

BACKGROUND: Wound healing is a composite and vital process in which devitalized tissue layers and cellular structures repair themselves. Bronchiolitis is generally prompted by respiratory syncytial virus or human metapneumovirus; this condition is an acute inflammatory injury of bronchioles. Heart problems that develop before birth are known as congenital heart defects (CHDs), and pregestational diabetes is considered a major predisposing factor of CHDs. N-Acetylcysteine (NAC) is a transformed kind of amino acid cysteine which restores the intracellular levels of the natural antioxidant glutathione when taken internally, thereby assisting the cells' ability to diminish the damaging effects of reactive oxygen species (ROS). OBJECTIVE: In the present communication, NAC's therapeutic potential for wound healing, acute bronchiolitis, and congenital heart defects (CHDs) is critically analyzed by reviewing its effect on the various targets of these diseases. The multifunctional nature of NAC is outlined in a review of evidence from in vitro and in vivo studies. CONCLUSION: In conclusion, NAC could be used as a therapeutic agent in the treatment of wound healing, acute bronchiolitis and congenital heart defects (CHDs). The focus of future research should be the following; (1) to examine NAC clinically to be considered in the treatment of wound healing; (2) to investigate whether NAC could be used alone or with insulin to prevent CHDs in infants with pregestational diabetes; (3) to evaluate the application of NAC as a potential agent for PAH treatment.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Bronquiolite/tratamento farmacológico , Cardiopatias Congênitas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Bronquiolite/metabolismo , Cardiopatias Congênitas/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA