RESUMO
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Assuntos
Neoplasias , Toxina Shiga , Humanos , Toxina Shiga/química , Toxina Shiga/metabolismo , Escherichia coli/metabolismo , Linfócitos T/metabolismo , Glicoesfingolipídeos/metabolismoRESUMO
Antibody-based cancer therapies have been evolving at a rapid pace in the pharmaceutical market. Bispecific antibody-drug conjugates that engage immune cells to target and kill cancer cells with precision have inspired the development of immunotherapy. Miniaturized antibody fragments such as diabodies, nanobodies, or single-chain variable fragments (scFvs) hold great promise as antibody-drug conjugates as they specifically target tumor tissue and can penetrate it. Here, we optimized the soluble periplasmic expression of the scFv OKT3 comprising the variable VH and VL domains of the mouse anti-human CD3 antibody muromonab-CD3 (trade name Orthoclone OKT3) in E. coli. By an expansion of the genetic code, we site-specifically incorporated the reactive non-canonical amino acid Nε-((2-azidoethoxy)carbonyl)-L-lysine (AzK) into scFv OKT3 using an orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair. To confirm the AzK incorporation and to demonstrate the accessibility of the reactive azide group, we conjugated a fluorophore to scFv OKT3 AzK variants by copper-free strain-promoted alkyne-azide cycloaddition ('click chemistry'). The scFv OKT3 wild type and the AzK variants bound T cells at nanomolar concentrations. In this study, a 'ready-to-click' scFv OKT3 was successfully developed for future applications, e.g. as controlled anti-T cell antibody-drug conjugate or bispecific T cell engager and for imaging immune T cell migration in cancers.
Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Muromonab-CD3/genética , Muromonab-CD3/uso terapêutico , Escherichia coli/genética , Azidas/uso terapêutico , Receptores de Antígenos de Linfócitos T , Neoplasias/tratamento farmacológico , Código Genético , Imunoconjugados/genética , Imunoconjugados/uso terapêuticoRESUMO
The present report assesses the capability of a soluble glycosyltransferase to modify glycolipids organized in two synthetic membrane systems that are attractive models to mimic cell membranes: giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs). The objective was to synthesize the Gb3 antigen (Galα1,4Galß1,4Glcß-Cer), a cancer biomarker, at the surface of these membrane models. A soluble form of LgtC that adds a galactose residue from UDP-Gal to lactose-containing acceptors was selected. Although less efficient than with lactose, the ability of LgtC to utilize lactosyl-ceramide as an acceptor was demonstrated on GUVs and SLBs. The reaction was monitored using the B-subunit of Shiga toxin as Gb3-binding lectin. Quartz crystal microbalance with dissipation analysis showed that transient binding of LgtC at the membrane surface was sufficient for a productive conversion of LacCer to Gb3. Molecular dynamics simulations provided structural elements to help rationalize experimental data.
Assuntos
Glicolipídeos , Lactose , Lactose/metabolismo , Glicolipídeos/metabolismo , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Lipossomas Unilamelares/químicaRESUMO
BACKGROUND: Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies. Here we present an approach to redirect the immune system into fighting cancer by targeting altered glycans at the surface of malignant cells. We developed a so-called "lectibody", a bispecific construct composed of a lectin linked to an antibody fragment. This lectibody is inspired by bispecific T cell engager (BiTEs) antibodies that recruit cytotoxic T lymphocytes (CTLs) while simultaneously binding to tumor-associated antigens (TAAs) on cancer cells. The tumor-related glycosphingolipid globotriaosylceramide (Gb3) represents the target of this proof-of-concept study. It is recognized with high selectivity by the B-subunit of the pathogen-derived Shiga toxin, presenting opportunities for clinical development. METHODS: The lectibody was realized by conjugating an anti-CD3 single-chain antibody fragment to the B-subunit of Shiga toxin to target Gb3+ cancer cells. The reactive non-canonical amino acid azidolysine (AzK) was inserted at predefined single positions in both proteins. The azido groups were functionalized by bioorthogonal conjugation with individual linkers that facilitated selective coupling via an alternative bioorthogonal click chemistry reaction. In vitro cell-based assays were conducted to evaluate the antitumoral activity of the lectibody. CTLs, Burkitt´s lymphoma-derived cells and colorectal adenocarcinoma cell lines were screened in flow cytometry and cytotoxicity assays for activation and lysis, respectively. RESULTS: This proof-of-concept study demonstrates that the lectibody activates T cells for their cytotoxic signaling, redirecting CTLs´ cytotoxicity in a highly selective manner and resulting in nearly complete tumor cell lysis-up to 93%-of Gb3+ tumor cells in vitro. CONCLUSIONS: This research highlights the potential of lectins in targeting certain tumors, with an opportunity for new cancer treatments. When considering a combinatorial strategy, lectin-based platforms of this type offer the possibility to target glycan epitopes on tumor cells and boost the efficacy of current therapies, providing an additional strategy for tumor eradication and improving patient outcomes.
Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T Citotóxicos , Complexo CD3/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/química , Ativação Linfocitária , Toxina Shiga , Fragmentos de Imunoglobulinas , Morte Celular , LectinasRESUMO
Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe3+ cations. The influence of Fe3+ amount on the phase composition, powders morphology, Brunauer-Emmett-Teller (BET) specific surface area (S), and pore size distribution were investigated, as well as electron paramagnetic resonance and Mössbauer spectroscopy analysis were performed. According to obtained data, the Fe3+ ions were incorporated in the HA lattice, and also amorphous Fe oxides were formed contributed to the gradual increase in the S and pore volume of the powders. The Density Functional Theory calculations supported these findings and revealed Fe3+ inclusion in the crystalline region with the hybridization among Fe-3d and O-2p orbitals and a partly covalent bond formation, whilst the inclusion of Fe oxides assumed crystallinity damage and rather occurred in amorphous regions of HA nanomaterial. In vitro tests based on the MG-63 cell line demonstrated that the introduction of Fe3+ does not cause cytotoxicity and led to the enhanced cytocompatibility of HA.
RESUMO
Through their ability to edit 6-O-sulfation pattern of Heparan sulfate (HS) polysaccharides, Sulf extracellular endosulfatases have emerged as critical regulators of many biological processes, including tumor progression. However, study of Sulfs remains extremely intricate and progress in characterizing their functional and structural features has been hampered by limited access to recombinant enzyme. In this study, we unlock this critical bottleneck, by reporting an efficient expression and purification system of recombinant HSulf-2 in mammalian HEK293 cells. This novel source of enzyme enabled us to investigate the way the enzyme domain organization dictates its functional properties. By generating mutants, we confirmed previous studies that HSulf-2 catalytic (CAT) domain was sufficient to elicit arylsulfatase activity and that its hydrophilic (HD) domain was necessary for the enzyme 6-O-endosulfatase activity. However, we demonstrated for the first time that high-affinity binding of HS substrates occurred through the coordinated action of both domains, and we identified and characterized 2 novel HS binding sites within the CAT domain. Altogether, our findings contribute to better understand the molecular mechanism governing HSulf-2 substrate recognition and processing. Furthermore, access to purified recombinant protein opens new perspectives for the resolution of HSulf structure and molecular features, as well as for the development of Sulf-specific inhibitors.