Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794330

RESUMO

Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.

2.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686361

RESUMO

Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important part of the antioxidant protection of red blood cells, but also affects its affinity for oxygen in both cases. In this study, the properties of oxyhemoglobin in complex with reduced glutathione (GSH) and properties of glutathionylated hemoglobin bound to glutathione via an SS bond were characterized. For this purpose, the methods of circular dichroism, Raman spectroscopy, infrared spectroscopy, tryptophan fluorescence, differential scanning fluorimetry, and molecular modeling were used. It was found that the glutathionylation of oxyhemoglobin caused changes in the secondary structure of the protein, reducing the alpha helicity, but did not affect the heme environment, tryptophan fluorescence, and the thermostability of the protein. In the noncovalent complex of oxyhemoglobin with reduced glutathione, the secondary structure of hemoglobin remained almost unchanged; however, changes in the heme environment and the microenvironment of tryptophans, as well as a decrease in the protein's thermal stability, were observed. Thus, the formation of a noncovalent complex of hemoglobin with glutathione makes a more significant effect on the tertiary and quaternary structure of hemoglobin than glutathionylation, which mainly affects the secondary structure of the protein. The obtained data are important for understanding the functioning of glutathionylated hemoglobin, which is a marker of oxidative stress, and hemoglobin in complex with GSH, which appears to deposit GSH and release it during deoxygenation to increase the antioxidant protection of cells.


Assuntos
Antioxidantes , Oxiemoglobinas , Humanos , Triptofano , Hemoglobinas , Glutationa , Heme , Oxigênio
3.
Free Radic Biol Med ; 196: 133-144, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36649901

RESUMO

The balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria. We have developed a novel sensor that uses unique properties of label-free surface-enhanced Raman spectroscopy (SERS) to identify conformational changes in heme of cytochrome c and to elucidate their role in functioning mitochondria. We have verified that molecule bond vibrations assessed by SERS are a reliable indicator of the heme conformation during changes in the inner mitochondrial membrane potential and ETC activity. We have demonstrated that cytochrome c heme reversibly switches between planar and ruffled conformations in response to the inner mitochondrial membrane potential (ΔΨ) and H+ concentration in the intermembrane space. This regulates the efficiency of the mitochondrial respiratory chain, thus, adjusting the mitochondrial respiration to the cell's consumption of ATP and the overall activity. We have found that under hypertensive conditions cytochrome c heme loses its sensitivity to ΔΨ that can affect the regulation of ETC activity. The ability of the proposed SERS-based sensor to track mitochondrial function opens broad perspectives in cell bioenergetics.


Assuntos
Citocromos c , Heme , Citocromos c/metabolismo , Heme/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159196

RESUMO

Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.


Assuntos
Pesquisa Biomédica , Microalgas , Carotenoides , Lipídeos/química , Análise Espectral Raman
5.
Biochemistry (Mosc) ; 86(5): 533-539, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33993863

RESUMO

Binding of dinitrosyl iron complex (DNIC) to albumin was studied using time-resolved fluorescence (TRF) and electron spin resonance (ESR) spectroscopy. It was found that the fluorescence lifetime of bovine serum albumin (BSA) and human serum albumin (HSA) decreases with binding and depends on DNIC concentration. The observed biexponential pattern of the BSA tryptophan (Trp) fluorescence decay is explained by the presence of two tryptophan residues in the protein molecule. We believe that DNIC forms stable complexes with the cysteine (Cys34) residue in the domain I of albumin. It was shown that the lifetime of albumin tryptophan fluorescence decreased during co-incubation of BSA with DNICs and glutathione. Effects of DNIC on the binding of specific spin-labeled fatty acids with albumin in human blood plasma were studied in vitro. The presence of DNIC in blood plasma does not change conformation of albumin domains II and III. We suggest that the most possible interaction between DNICs and albumin is the formation of a complex; and nitrosylation of the cysteine residue in the albumin domain I occurs without the changes in albumin conformation.


Assuntos
Ferro/farmacologia , Óxidos de Nitrogênio/farmacologia , Soroalbumina Bovina/efeitos dos fármacos , Albumina Sérica/efeitos dos fármacos , Albumina Sérica/metabolismo , Adulto , Idoso , Animais , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/química , Humanos , Ferro/química , Masculino , Pessoa de Meia-Idade , Óxidos de Nitrogênio/química , Conformação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência
6.
Cell Physiol Biochem ; 39(1): 81-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322642

RESUMO

BACKGROUND/AIMS: ATP release from erythrocyte plays a key role in hypoxia-induced elevation of blood flow in systematic circulation. We have previously shown that hemolysis contributes to erythrocyte ATP release triggered by several stimuli, including hypoxia, but the molecular mechanisms of hypoxia-increased membrane fragility remain unknown. METHODS: In this study, we compared the action of hypoxia on hemolysis, ATP release and the composition of membrane-bound proteins in human erythrocytes. RESULTS: Twenty minutes incubation of human erythrocytes in the oxygen-free environment increased the content of extracellular hemoglobin by ∼1.5 fold. Paired measurements of hemoglobin and ATP content in the same samples, showed a positive correlation between hemolysis and ATP release. Comparative analysis of SDS-PAGE electrophoresis of erythrocyte ghosts obtained under control and deoxygenated conditions revealed a ∼2-fold elevation of the content of membrane-bound protein with Mr of ∼60 kDa. CONCLUSION: Deoxygenation of human erythrocytes affects composition of membrane-bound proteins. Additional experiments should be performed to identify the molecular origin of 60 kDa protein and its role in the attenuation of erythrocyte integrity and ATP release in hypoxic conditions.


Assuntos
Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Proteínas de Membrana/metabolismo , Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Hipóxia Celular , Eletroforese em Gel de Poliacrilamida , Membrana Eritrocítica/metabolismo , Feminino , Hemólise , Humanos , Modelos Lineares , Masculino , Fatores de Tempo , Adulto Jovem
7.
PLoS One ; 10(11): e0142084, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544552

RESUMO

In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.


Assuntos
Trifosfato de Adenosina/farmacologia , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Bainha de Mielina/metabolismo , Nervo Isquiático/metabolismo , Espectrometria de Massa de Íon Secundário/métodos , Análise Espectral Raman/métodos , Algoritmos , Animais , Fluidez de Membrana/efeitos dos fármacos , Modelos Biológicos , Bainha de Mielina/efeitos dos fármacos , Rana temporaria , Nervo Isquiático/citologia , Nervo Isquiático/efeitos dos fármacos
8.
Sci Rep ; 5: 13793, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346634

RESUMO

Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman scattering due to high concentration of electric near-field and large contact area between mitochondria and nanostructured surfaces.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Análise Espectral Raman , Trifosfato de Adenosina/biossíntese , Animais , Transporte de Elétrons , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Prótons , Ratos , Análise Espectral Raman/métodos
9.
Biochim Biophys Acta ; 1848(10 Pt A): 2337-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26171817

RESUMO

Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Citoesqueleto/patologia , Digitonina/farmacologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Humanos , Pressão Osmótica
10.
J Membr Biol ; 247(7): 571-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840161

RESUMO

Upstream intermediates of intracellular signaling involved in cell volume regulation remain poorly explored. Recently, we demonstrated that osmolarity-induced volume changes in permeabilized cells were several-fold higher than those observed with intact cells, indicating the osmosensing properties of cytoplasmic gel. To further examine the role of cytoplasmic biogel in cell volume regulation, we compared the action of short-term heat treatment on volume changes in intact and permeabilized A549 cells. Pretreatment of A549 cells at 48 °C suppressed swelling triggered by dissipation of Donnan's equilibrium as well as by hyposmotic medium. Significantly, heat treatment completely abolished the action of hyposomotic medium on volume changes in permeabilized cells, showing that temperature elevation suppresses osmosensing properties via its effect on biogel rather than on plasma membrane water permeability. Identical heat treatment blocked the regulatory volume decrease (RVD) as well as the increment of Ba(2+)-sensitive K(+)-channel activity seen in control cells exposed to hyposmotic swelling. Unlike swelling, hyperosmotic shrinkage was decreased by twofold in cells subjected to 10-min preincubation at 50 °C. Our results disclose that osmosensing by cytoplasmic gel is a key event in the RVD triggered by hypotonic swelling. The role of biogel and plasma membrane in intracellular signaling triggered by hyperosmotic shrinkage should be further investigated.


Assuntos
Tamanho Celular , Citoplasma/metabolismo , Osmorregulação , Temperatura , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Humanos , Espaço Intracelular/metabolismo , Canais Iônicos/metabolismo , Pressão Osmótica , Potássio/metabolismo , Sódio/metabolismo
11.
Am J Physiol Cell Physiol ; 301(2): C403-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21562307

RESUMO

Purinergic receptors activate diverse signaling cascades and regulate the activity of cell volume-sensitive ion transporters. However, the effects of ATP and other agonists of P2 receptors on cell volume dynamics are only scarcely studied. In the present work, we used the recently developed dual-image surface reconstruction technique to explore the influence of purinergic agonists on cell volume in the C11-Madin-Darby canine kidney cell line resembling intercalated cells from kidney collecting ducts. Unexpectedly, we found that ATP and UTP triggered very robust (55-60%) cell shrinkage that lasted up to 2 h after agonist washout. Purinergic regulation of cell volume required increases in intracellular Ca(2+) and could be partially mimicked by the Ca(2+)-ionophore ionomycin or activation of protein kinase C by 4ß-phorbol 12-myristate 13-acetate. Cell shrinkage was accompanied by strong reductions in intracellular K(+) and Cl(-) content measured using steady-state (86)Rb(+) and (36)Cl(-) distribution. Both shrinkage and ion efflux in ATP-treated cells were prevented by the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and by the BK(Ca) channel inhibitors charybdotoxin, iberiotoxin, and paxilline. To evaluate the significance of cell-volume changes in purinergic signaling, we measured the impact of ATP on the expression of the immediate-early gene c-Fos. Thirty-minute treatment with ATP increased c-Fos immunoreactivity by approximately fivefold, an effect that was strongly inhibited by charybdotoxin and completely prevented by NPPB. Overall, our findings suggest that ATP-induced cell-volume changes are partially responsible for the physiological actions of purinergic agonists.


Assuntos
Trifosfato de Adenosina/metabolismo , Tamanho Celular , Células Epiteliais/metabolismo , Rim/metabolismo , Agonistas do Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Uridina Trifosfato/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Cloretos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cães , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Células Epiteliais/efeitos dos fármacos , Ionóforos/farmacologia , Rim/citologia , Rim/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Fatores de Tempo
12.
J Membr Biol ; 241(3): 145-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21584679

RESUMO

This study examined the role of cell volume modulation in plasma membrane rupture and death documented in ouabain-treated renal epithelial cells. Long-term exposure to ouabain caused massive death of C11-MDCK (Madin-Darby canine kidney) epithelial cells, documented by their detachment, chromatin cleavage and complete loss of lactate dehydrogenase (LDH), but did not affect the survival of vascular smooth muscle cells (VSMCs) from the rat aorta. Unlike the distinct impact on cell survival, 2-h exposure to ouabain led to sharp elevation of the [Na⁺](i)/[K⁺](i) ratio in both cell types. A similar increment of Na⁺(i) content was evoked by sustained inhibition of Na⁺,K⁺-ATPase in K⁺-free medium. However, in contrast to ouabain, C11-MDCK cells survived perfectly during 24-h exposure to K⁺-free medium. At 3 h, the volume of ouabain-treated C11-MDCK cells and VSMCs, measured by the recently developed dual-image surface reconstruction technique, was increased by 16 and 12%, respectively, whereas 5-10 min before the detachment of ouabain-treated C11-MDCK cells, their volume was augmented by ~30-40%. To examine the role of modest swelling in the plasma membrane rupture of ouabain-treated cells, we compared actions of hypotonic medium on volume and LDH release. We observed that LDH release from hypoosmotically swollen C11-MDCK cells was triggered when their volume was increased by approximately fivefold. Thus, our results showed that the rupture of plasma membranes in ouabain-treated C11-MDCK cells was not directly caused by cell volume modulation evoked by Na⁺,K⁺-ATPase inhibition and inversion of the [Na⁺](i)/[K⁺](i) ratio.


Assuntos
Membrana Celular/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Transporte de Íons/efeitos dos fármacos , Rim/metabolismo , Músculo Liso Vascular/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio , Animais , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Cães , Células Epiteliais/citologia , Rim/citologia , L-Lactato Desidrogenase/metabolismo , Músculo Liso Vascular/citologia , Osmose/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Potássio/metabolismo , Ratos , Rubídio/metabolismo , Isótopos de Sódio/metabolismo , Radioisótopos de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA