Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 39: 101803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39175664

RESUMO

GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.

2.
Arch Biochem Biophys ; 745: 109703, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543351

RESUMO

PTB (PhosphoTyrosine Binding) domains are protein domains that exert their function by binding phosphotyrosine residues on other proteins. They are commonly found in a variety of signaling proteins and are important for mediating protein-protein interactions in numerous cellular processes. PTB domains can also exhibit binding to unphosphorylated ligands, suggesting that they have additional binding specificities beyond phosphotyrosine recognition. Structural studies have reported that the PTB domain from FRS2 possesses this peculiar feature, allowing it to interact with both phosphorylated and unphosphorylated ligands, such as TrkB and FGFR1, through different topologies and orientations. In an effort to elucidate the dynamic and functional properties of these protein-protein interactions, we provide a complete characterization of the folding mechanism of the PTB domain of FRS2 and the binding process to peptides mimicking specific regions of TrkB and FGFR1. By analyzing the equilibrium and kinetics of PTB folding, we propose a mechanism implying the presence of an intermediate along the folding pathway. Kinetic binding experiments performed at different ionic strengths highlighted the electrostatic nature of the interaction with both peptides. The specific role of single amino acids in early and late events of binding was pinpointed by site-directed mutagenesis. These results are discussed in light of previous experimental works on these protein systems.


Assuntos
Peptídeos , Domínios de Homologia de src , Domínios Proteicos , Fosfotirosina/metabolismo , Ligantes , Sítios de Ligação , Peptídeos/metabolismo , Ligação Proteica
3.
Protein Sci ; 32(8): e4729, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468946

RESUMO

In an effort to investigate the molecular determinants of ligand recognition of the C-terminal SH2 domain of the SHP2 protein, we conducted extensive site-directed mutagenesis and kinetic binding experiments with a peptide mimicking a specific portion of a physiological ligand (the scaffold protein Gab2). Obtained data provided an in-depth characterization of the binding reaction, allowing us to pinpoint residues topologically far from the binding pocket of the SH2 domain to have a role in the recognition and binding of the peptide. The presence of a sparse energetic network regulating the interaction with Gab2 was identified and characterized through double mutant cycle analysis, performed by challenging all the designed site-directed variants of C-SH2 with a Gab2 peptide mutated at +3 position relative to its phosphorylated tyrosine, a key residue for C-SH2 binding specificity. Results highlighted non-optimized residues involved in the energetic network regulating the binding with Gab2, which may be at the basis of the ability of this SH2 domain to interact with different partners in the intracellular environment. Moreover, a detailed analysis of kinetic and thermodynamic parameters revealed the role of the residue at +3 position on Gab2 in the early and late events of the binding reaction with the C-SH2 domain.


Assuntos
Peptídeos , Domínios de Homologia de src , Ligantes , Peptídeos/metabolismo , Mutagênese Sítio-Dirigida , Tirosina/metabolismo , Ligação Proteica
4.
Arch Biochem Biophys ; 731: 109444, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36265650

RESUMO

Two thirds of eukaryotic proteins have evolved as multidomain constructs, and in vivo, domains fold within a polypeptide chain, with inter-domain interactions possibly crucial for correct folding. However, to date, most of the experimental folding studies are based on domains in isolation. In an effort to better understand multidomain folding, in this work we analyzed, through equilibrium and kinetic folding experiments, the folding properties of the Growth factor receptor-bound protein 2 (Grb2), composed by one SRC homology 2 domain flanked by two SRC homology 3 domains. In particular we compared the kinetic features of the multidomain construct with the domains expressed in isolation. By performing single and double mixing folding experiments, we demonstrated that the folding of the SH2 domain is kinetically trapped in a misfolded intermediate when tethered to the C-SH3. Importantly, within the multidomain construct, misfolding occurred independently if refolding is started with C-SH3 in its unfolded or native state. Interestingly, our data reported a peculiar scenario, in which SH2 and C-SH3 domain reciprocally and transiently interact during folding. Altogether, the analysis of kinetic folding data provided a quantitative description of the multidomain folding of Grb2 protein, discussed under the light of previous works on multidomain folding.


Assuntos
Peptídeos , Domínios de Homologia de src , Cinética , Peptídeos/química , Dobramento de Proteína
5.
Biomolecules ; 12(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892324

RESUMO

SH2 domains are structural modules specialized in the recognition and binding of target sequences containing a phosphorylated tyrosine residue. They are mostly incorporated in the 3D structure of scaffolding proteins that represent fundamental regulators of several signaling pathways. Among those, Crkl plays key roles in cell physiology by mediating signals from a wide range of stimuli, and its overexpression is associated with several types of cancers. In myeloid cells expressing the oncogene BCR/ABL, one interactor of Crkl-SH2 is the focal adhesion protein Paxillin, and this interaction is crucial in leukemic transformation. In this work, we analyze both the folding pathway of Crkl-SH2 and its binding reaction with a peptide mimicking Paxillin, under different ionic strength and pH conditions, by using means of fluorescence spectroscopy. From a folding perspective, we demonstrate the presence of an intermediate along the reaction. Moreover, we underline the importance of the electrostatic interactions in the early event of recognition, occurring between the phosphorylated tyrosine of the Paxillin peptide and the charge residues of Crkl-SH2. Finally, we highlight a pivotal role of a highly conserved histidine residue in the stabilization of the binding complex. The experimental results are discussed in light of previous works on other SH2 domains.


Assuntos
Proteínas Nucleares , Domínios de Homologia de src , Proteínas Nucleares/metabolismo , Oncogenes , Paxilina , Fosforilação , Ligação Proteica , Tirosina/metabolismo , Domínios de Homologia de src/fisiologia
6.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947971

RESUMO

Crkl is a protein involved in the onset of several cancer pathologies that exerts its function only through its protein-protein interaction domains, a SH2 domain and two SH3 domains. SH3 domains are small protein interaction modules that mediate the binding and recognition of proline-rich sequences. One of the main physiological interactors of Crkl is C3G (also known as RAPGEF1), an interaction with key implications in regulating cellular growth and differentiation, cell morphogenesis and adhesion processes. Thus, understanding the interaction between Crkl and C3G is fundamental to gaining information about the molecular determinants of the several cancer pathologies in which these proteins are involved. In this paper, through a combination of fast kinetics at different experimental conditions and site-directed mutagenesis, we characterize the binding reaction between the N-SH3 domain of Crkl and a peptide mimicking a specific portion of C3G. Our results show a clear effect of pH on the stability of the complex, due to the protonation of negatively charged residues in the binding pocket of N-SH3. Our results are discussed under the light of previous work on SH3 domains.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Mutagênese Sítio-Dirigida/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Sítios de Ligação , Adesão Celular , Diferenciação Celular , Proliferação de Células , Fator 2 de Liberação do Nucleotídeo Guanina/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Eletricidade Estática
7.
Protein Sci ; 30(12): 2385-2395, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605082

RESUMO

SH2 domains are a class of protein-protein interaction modules with the function to recognize and bind sequences characterized by the presence of a phosphorylated tyrosine. SHP2 is a protein phosphatase involved in the Ras-ERK1/2 signaling pathway that possess two SH2 domains, namely, N-SH2 and C-SH2, that mediate the interaction of SHP2 with various partners and determine the regulation of its catalytic activity. One of the main interactors of the SH2 domains of SHP2 is Gab2, a scaffolding protein with critical role in determining cell differentiation. Despite their key biological role and the importance of a correct native fold to ensure it, the mechanism of binding of SH2 domains with their ligands and the determinants of their stability have been poorly characterized. In this article, we present a comprehensive kinetic study of the folding of the C-SH2 domain and the binding mechanism with a peptide mimicking a region of Gab2. Our data, obtained at different pH and ionic strength conditions and supported by site-directed mutagenesis, highlight the role of electrostatic interactions in the early events of recognition. Interestingly, our results suggest a key role of a highly conserved histidine residue among SH2 family in the interaction with negative charges carried by the phosphotyrosine of Gab2. Moreover, the analysis of the equilibrium and kinetic folding data of C-SH2 describes a complex mechanism implying a change in rate-limiting step at high denaturant concentrations. Our data are discussed under the light of previous works on N-SH2 domain of SHP2 and other SH2 domains.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Histidina/química , Peptídeos/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica , Ureia/química , Domínios de Homologia de src
8.
Biol Direct ; 16(1): 15, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641953

RESUMO

The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.


Assuntos
Neoplasias , Viroses , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Domínios PDZ , Ligação Proteica , Proteínas
9.
Cells ; 9(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171874

RESUMO

Gab2 is a scaffolding protein, overexpressed in many types of cancers, that plays a key role in the formation of signaling complexes involved in cellular proliferation, migration, and differentiation. The interaction between Gab2 and the C-terminal SH3 domain of the protein Grb2 is crucial for the activation of the proliferation-signaling pathway Ras/Erk, thus representing a potential pharmacological target. In this study, we identified, by virtual screening, seven potential inhibitor molecules that were experimentally tested through kinetic and equilibrium binding experiments. One compound showed a remarkable effect in lowering the affinity of the C-SH3 domain for Gab2. This inhibitory effect was subsequently validated in cellula by using lung cancer cell lines A549 and H1299. Our results are discussed under the light of previous works on the C-SH3:Gab2 interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Domínios de Homologia de src , Linhagem Celular Tumoral , Fluorescência , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Reprodutibilidade dos Testes
10.
Protein Sci ; 29(10): 2038-2042, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822073

RESUMO

The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS-CoV and SARS-CoV-2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ-binding motif at its C-terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS-CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS-CoV and SARS-CoV-2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS-CoV-2 compared to SARS-CoV may rely on the increased affinity of its Envelope protein for PALS1.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Pneumonia Viral/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Betacoronavirus/química , Sítios de Ligação , COVID-19 , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/virologia , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/química , Domínios PDZ , Pandemias , Peptídeos/química , Peptídeos/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral/química
11.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878075

RESUMO

SH2 domains are protein domains that modulate protein-protein interactions through a specific interaction with sequences containing phosphorylated tyrosines. In this work, we analyze the folding pathway of the C-terminal SH2 domain of the p85 regulatory subunit of the protein PI3K, which presents a proline residue in a cis configuration in the loop between the ßE and ßF strands. By employing single and double jump folding and unfolding experiments, we demonstrate the presence of an on-pathway intermediate that transiently accumulates during (un)folding. By comparing the kinetics of folding of the wild-type protein to that of a site-directed variant of C-SH2 in which the proline was replaced with an alanine, we demonstrate that this intermediate is dictated by the peptidyl prolyl cis-trans isomerization. The results are discussed in the light of previous work on the effect of peptidyl prolyl cis-trans isomerization on folding events.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/química , Dobramento de Proteína , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Humanos , Domínios de Homologia de src
12.
Cells ; 8(8)2019 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382676

RESUMO

Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST.


Assuntos
Acetilcisteína/farmacologia , Neoplasias do Colo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sulfurtransferases/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Sequestradores de Radicais Livres/farmacologia , Humanos
13.
Sci Rep ; 9(1): 4058, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858483

RESUMO

SH2 domains are protein domains that mediate protein-protein interaction through the recognition and binding of specific sequences containing phosphorylated tyrosines. The p85 protein is the regulatory subunit of the heterodimeric enzyme PI3K, an important enzyme involved in several molecular pathways. In this work we characterize the folding kinetics of the NSH2 domain of p85. Our data clearly reveal peculiar folding kinetics, characterized by an apparent mismatch between the observed folding and unfolding kinetics. Taking advantage of double mixing stopped flow experiments and site directed mutagenesis we demonstrate that such behavior is due to the cis/trans isomerization of the peptide bond between D73 and P74, being in a cis conformation in the native protein. Our data are discussed in comparison with previous works on the folding of other SH2 domains.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/ultraestrutura , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Domínios de Homologia de src/genética , Classe Ia de Fosfatidilinositol 3-Quinase/química , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Cinética , Peptídeos/química , Peptídeos/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/ultraestrutura , Fosforilação , Conformação Proteica , Dobramento de Proteína
14.
Oxid Med Cell Longev ; 2019: 8102936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838088

RESUMO

Hydrogen sulfide (H2S), a known inhibitor of cytochrome c oxidase (CcOX), plays a key signaling role in human (patho)physiology. H2S is synthesized endogenously and mainly metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide:quinone oxidoreductase (SQR), whereby H2S-derived electrons are injected into the respiratory chain stimulating O2 consumption and ATP synthesis. Under hypoxic conditions, H2S has higher stability and is synthesized at higher levels with protective effects for the cell. Herein, working on SW480 colon cancer cells, we evaluated the effect of hypoxia on the ability of cells to metabolize H2S. The sulfide-oxidizing activity was assessed by high-resolution respirometry, measuring the stimulatory effect of sulfide on rotenone-inhibited cell respiration in the absence or presence of antimycin A. Compared to cells grown under normoxic conditions (air O2), cells exposed for 24 h to hypoxia (1% O2) displayed a 1.3-fold reduction in maximal sulfide-oxidizing activity and 2.7-fold lower basal O2 respiration. Based on citrate synthase activity assays, mitochondria of hypoxia-treated cells were 1.8-fold less abundant and displayed 1.4-fold higher maximal sulfide-oxidizing activity and 2.6-fold enrichment in SQR as evaluated by immunoblotting. We speculate that under hypoxic conditions mitochondria undergo these adaptive changes to protect cell respiration from H2S poisoning.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Modelos Biológicos , Oxirredução , Consumo de Oxigênio , Quinona Redutases/metabolismo
15.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669253

RESUMO

Beta-2 microglobulin (ß2m) is a protein responsible for a pathologic condition, known as dialysis-related amyloidosis (DRA), caused by its aggregation and subsequent amyloid formation. A naturally occurring mutation of ß2m, D76N, presents a higher amyloidogenic propensity compared to the wild type counterpart. Since the three-dimensional structure of the protein is essentially unaffected by the mutation, the increased aggregation propensity of D76N has been generally ascribed to its lower thermodynamic stability and increased dynamics. In this study we compare the equilibrium unfolding and the aggregation propensity of wild type ß2m and D76N variant at different experimental conditions. Our data revealed a surprising effect of the D76N mutation in the residual structure of the denatured state, which appears less compact than that of the wild type protein. A careful investigation of the structural malleability of the denatured state of wild type ß2m and D76N pinpoint a clear role of the denatured state in triggering the amyloidogenic propensity of the protein. The experimental results are discussed in the light of the previous work on ß2m and its role in disease.


Assuntos
Substituição de Aminoácidos , Mutação , Agregados Proteicos , Agregação Patológica de Proteínas , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Alelos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Desnaturação Proteica , Desdobramento de Proteína , Proteínas Recombinantes , Microglobulina beta-2/química
16.
J Control Release ; 275: 177-185, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29474961

RESUMO

A genetically engineered human ferritin heavy chain (HFt)-based construct has been recently shown by our group to efficiently entrap and deliver doxorubicin to cancer cells. This construct, named HFt-MP-PAS, contained a tumor-selective sequence (MP) responsive to proteolytic cleavage by tumor proteases (MMPs), located between each HFt subunit and an outer shielding polypeptide sequence rich in proline (P), serine (S) and alanine (A) residues (PAS). HFt-MP-PAS displayed excellent therapeutic efficacy in xenogenic pancreatic and head and neck cancer models in vivo, leading to a significant increase in overall animal survivals. Here we report a new construct obtained by the genetic insertion of two glutamate residues in the PAS sequence of HFt-MP-PAS. Such new construct, named HFt-MP-PASE, is characterized by improved performances as drug biodistribution in a xenogenic pancreatic cancer model in vivo. Moreover, HFt-MP-PASE efficiently encapsulates the anti-cancer drug mitoxantrone (MIT), and the resulting MIT-loaded nanoparticles proved to be more soluble and monodispersed than the HFt-MP-PAS counterparts. Importantly, in vitro MIT-loaded HFt-MP-PASE kills several cancer cell lines of different origin (colon, breast, sarcoma and pancreas) at least as efficiently as the free drug. Finally, our MIT loaded protein nanocages allowed in vivo an impressive incrementing of the drug accumulation in the tumor with respect to the free drug.


Assuntos
Antineoplásicos/administração & dosagem , Apoferritinas/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Ácido Glutâmico/administração & dosagem , Mitoxantrona/administração & dosagem , Nanopartículas/administração & dosagem , Linhagem Celular Tumoral , Humanos , Distribuição Tecidual
17.
Oxid Med Cell Longev ; 2017: 8940321, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421128

RESUMO

The human disease classical homocystinuria results from mutations in the gene encoding the pyridoxal 5'-phosphate- (PLP-) dependent cystathionine ß-synthase (CBS), a key enzyme in the transsulfuration pathway that controls homocysteine levels, and is a major source of the signaling molecule hydrogen sulfide (H2S). CBS activity, contributing to cellular redox homeostasis, is positively regulated by S-adenosyl-L-methionine (AdoMet) but fully inhibited upon CO or NO• binding to a noncatalytic heme moiety. Despite extensive studies, the molecular basis of several pathogenic CBS mutations is not yet fully understood. Here we found that the ferrous heme of the reportedly mild p.P49L CBS variant has altered spectral properties and markedly increased affinity for CO, making the protein much more prone than wild type (WT) CBS to inactivation at physiological CO levels. The higher CO affinity could result from the slightly higher flexibility in the heme surroundings revealed by solving at 2.80-Å resolution the crystallographic structure of a truncated p.P49L. Additionally, we report that p.P49L displays impaired H2S-generating activity, fully rescued by PLP supplementation along the purification, despite a minor responsiveness to AdoMet. Altogether, the results highlight how increased propensity to CO inactivation of an otherwise WT-like variant may represent a novel pathogenic mechanism in classical homocystinuria.


Assuntos
Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cristalografia por Raios X , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Heme/química , Heme/metabolismo , Humanos , Cinética , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , S-Adenosilmetionina/metabolismo
18.
Biochim Biophys Acta ; 1857(8): 1127-1138, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27039165

RESUMO

Merely considered as a toxic gas in the past, hydrogen sulfide (H2S) is currently viewed as the third 'gasotransmitter' in addition to nitric oxide (NO) and carbon monoxide (CO), playing a key signalling role in human (patho)physiology. H2S can either act as a substrate or, similarly to CO and NO, an inhibitor of mitochondrial respiration, in the latter case by targeting cytochrome c oxidase (CcOX). The impact of H(2)S on mitochondrial energy metabolism crucially depends on the bioavailability of this gaseous molecule and its interplay with the other two gasotransmitters. The H(2)S-producing human enzyme cystathionine ß-synthase (CBS), sustaining cellular bioenergetics in colorectal cancer cells, plays a role in the interplay between gasotransmitters. The enzyme was indeed recently shown to be negatively modulated by physiological concentrations of CO and NO, particularly in the presence of its allosteric activator S-adenosyl-l-methionine (AdoMet). These newly discovered regulatory mechanisms are herein reviewed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Neoplasias do Colo/metabolismo , Cistationina beta-Sintase/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Monóxido de Carbono/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Glutationa/metabolismo , Humanos , Cinética , Mitocôndrias/patologia , Modelos Moleculares , Óxido Nítrico/metabolismo , Fosforilação Oxidativa , S-Adenosilmetionina/metabolismo , Transdução de Sinais
19.
Mini Rev Med Chem ; 16(9): 683-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27001259

RESUMO

The simplest and minimal modification of a single amino acid or peptide bonds is represented by N-methylation. This can improve the pharmacokinetic properties of biologically active peptides as well as resulting in analogues that show specific biological activity such as enzyme inhibitors, receptor antagonists and agonists, building blocks in combinatorial chemistry for the screening of new potential drugs. Further, structural and conformational studies performed with N-methylated analogues of natural amino acids and peptides enabled to (i) produce stable foldamers with different topology with respect to the helix of natural and endogenous peptides, (ii) confer to modified peptides high stability against proteases and (iii) enhance lipophilicity and bioavailability for pharmacological purposes. Consequentially, it is crucial to provide optically pure N-methyl-amino acids and N-methylated peptides with a large supply. The present report will focus on the results obtained in the last decade in the field of chemical synthetic methodologies for the N-methylation of amino acids.


Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Aminoácidos/síntese química , Animais , Humanos , Metilação , Peptídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA