Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(10): 9815-9829, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30256609

RESUMO

In vitro transcribed mRNA constitutes a versatile platform to encode antigens and to evoke CD8 T-cell responses. Systemic delivery of mRNA packaged into cationic liposomes (lipoplexes) has proven particularly powerful in achieving effective antitumor immunity in animal models. Yet, T-cell responses to mRNA lipoplexes critically depend on the induction of type I interferons (IFN), potent pro-inflammatory cytokines, which inflict dose-limiting toxicities. Here, we explored an advanced hybrid lipid polymer shell mRNA nanoparticle (lipopolyplex) endowed with a trimannose sugar tree as an alternative delivery vehicle for systemic mRNA vaccination. Like mRNA lipoplexes, mRNA lipopolyplexes were extremely effective in conferring antitumor T-cell immunity upon systemic administration. Conversely to mRNA lipoplexes, mRNA lipopolyplexes did not rely on type I IFN for effective T-cell immunity. This differential mode of action of mRNA lipopolyplexes enabled the incorporation of N1 methyl pseudouridine nucleoside modified mRNA to reduce inflammatory responses without hampering T-cell immunity. This feature was attributed to mRNA lipopolyplexes, as the incorporation of thus modified mRNA into lipoplexes resulted in strongly weakened T-cell immunity. Taken together, we have identified lipopolyplexes containing N1 methyl pseudouridine nucleoside modified mRNA as potent yet low-inflammatory alternatives to the mRNA lipoplexes currently explored in early phase clinical trials.


Assuntos
Inflamação/imunologia , Lipídeos/imunologia , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Animais , Células Dendríticas/imunologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Células Tumorais Cultivadas
2.
Int J Pharm ; 523(1): 142-150, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284919

RESUMO

Recent advances in nanoparticle systems for improved drug delivery display a great potential for the administration of active molecules. Here, lipid miniemulsions with various internal nanostructures were loaded with the chemotherapeutic agent Paclitaxel. The goal is to assess the impact of internal structures on their efficiency. Previously the structure, the stability and the physico-chemical properties of those carriers were characterized. Modalities of action were addressed by the evaluation of their effects on the tumor cells viability, their cellular uptake by flow cytometry and confocal microscopy detection of fluorescently labeled nanostructured miniemulsions. Nanostructured miniemulsions showed variations in the cell internalization process likely due to differences in the internal structure. All paclitaxel-loaded emulsions were active reservoirs from which Paclitaxel could be released, however bicontinuous cubosomes showed the best efficiency. Considering the fact that these delivery systems can offer a new life to bioactive compounds previously abandoned due to a low aqueous solubility, these data may represent an important step towards the development of new clinical therapeutic strategies against cancers.


Assuntos
Sistemas de Liberação de Medicamentos , Glicerídeos , Nanoestruturas , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/toxicidade , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Glicerídeos/administração & dosagem , Glicerídeos/química , Glicerídeos/toxicidade , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/toxicidade , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/toxicidade
3.
Int J Pharm ; 460(1-2): 264-72, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24225347

RESUMO

Lipopolyplexes formulations resulting from association of nucleic acid, cationic liposomes and a cationic polymer are attracting formulations for siRNA delivery. Herein, imidazole- and imidazolium-based liposomes in association with histidinylated polymers are studied to produce siRNA lipopoplyplexes (LPRi) subsequently used for gene silencing. Several kinds of imidazole/histidine liposomes and cationic polymers are tested. The gene silencing effect is evaluated with synthetic siRNA directed against EGFP or luciferase mRNA, in HeLa cells stably expressing EGFP or B16F10 melanoma cells stably expressing luciferase, respectively. SiRNA formulations are compared with those prepared using some commercial transfection reagents. One formulation called His-lPEI LPRi100 comprising siRNA, histidinylated lPEI (His-lPEI) and liposomes 100 made with O,O-dioleyl-N-[3N-(N-methylimidazolium iodide)propylene] phosphoramidate and O,O-dioleyl-N-histamine phosphoramidate appears to give the best specific inhibition of gene expression at 10nM siRNA in a dose-dependent manner with low cytotoxicity. This formulation exhibits a size and a zeta potential of 60 nm and +84 mV, respectively. According to our previous works, histidinylated lipopolyplexes appears as a versatile formulation for DNA, mRNA and siRNA transfection.


Assuntos
RNA Interferente Pequeno/química , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Células HeLa , Histidina/química , Humanos , Imidazóis/química , Lipossomos , Luciferases/genética , Melanoma Experimental , Polietilenoimina/química , Polímeros/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA