Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071481

RESUMO

Neuropathic pain remains poorly managed by current therapies, highlighting the need to improve our knowledge of chronic pain mechanisms. In neuropathic pain models, dorsal root ganglia (DRG) nociceptive neurons transfer miR-21 packaged in extracellular vesicles to macrophages that promote a proinflammatory phenotype and contribute to allodynia. Here we show that miR-21 conditional deletion in DRG neurons was coupled with lack of upregulation of chemokine CCL2 after nerve injury and reduced accumulation of CCR2-expressing macrophages, which showed TGF-ß-related pathway activation and acquired an M2-like antinociceptive phenotype. Indeed, neuropathic allodynia was attenuated after conditional knockout of miR-21 and restored by TGF-ßR inhibitor (SB431542) administration. Since TGF-ßR2 and TGF-ß1 are known miR-21 targets, we suggest that miR-21 transfer from injured neurons to macrophages maintains a proinflammatory phenotype via suppression of such an antiinflammatory pathway. These data support miR-21 inhibition as a possible approach to maintain polarization of DRG macrophages at an M2-like state and attenuate neuropathic pain.


Assuntos
MicroRNAs , Neuralgia , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Macrófagos/metabolismo , Neuralgia/genética , Neuralgia/terapia , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Gânglios Espinais/metabolismo
2.
Brain Behav Immun ; 106: 289-306, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115544

RESUMO

Pain is a persistent symptom of Rheumatoid Arthritis, and the K/BxN serum transfer model recapitulates both association and dissociation between pain and joint inflammation in RA. Furthermore, this model features monocyte/macrophage infiltration in joints and lumbar dorsal root ganglia (DRG), where these immune cells are close to nociceptive neurons. We focussed on CX3CR1-monocyte/macrophage trafficking and show that at peak paw swelling associated with nociception, CX3CR1 deletion altered neither swelling nor macrophage infiltration/phenotype in paws. However, acute nociception and DRG non-classical monocyte numbers were reduced in CX3CR1GFP/GFP (KO) compared to CX3CR1+/GFP (WT). Nociception that persisted despite swelling had resolved was attenuated in KO and correlated with DRG macrophages displaying M2-like phenotype. Still in the DRG, neurons up-regulated neuropeptide CGRP and olcegepant treatment reduced acute swelling, nociception, and leukocyte infiltration in paws and DRG. We delineate in-vitro a signalling pathway showing that CGRP liberates the CX3CR1 ligand fractalkine (FKN) from endothelium, and in bone marrow-derived macrophages, FKN promotes activation of intracellular kinases, polarisation towards M1-like phenotype and release of pro-nociceptive IL-6. These data implicate non-classical CX3CR1-expressing monocyte and macrophage recruitment into the DRG in initiation and maintenance of arthritis pain.


Assuntos
Artrite Reumatoide , Quimiocina CX3CL1 , Receptor 1 de Quimiocina CX3C/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Quimiocina CX3CL1/metabolismo , Gânglios Espinais/metabolismo , Humanos , Interleucina-6/metabolismo , Ligantes , Macrófagos/metabolismo , Monócitos/metabolismo , Dor/metabolismo
3.
Pain Rep ; 6(1): e894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981928

RESUMO

The growing awareness of the critical role played by the innate and adaptive immune systems in the mechanisms underlying chronic pain has prompted further research examining the modalities by which immune cells communicate with neurones, the aim being to identify new players involved in inflammatory and neuropathic pain signalling. This collection of research includes 9 articles on neuroimmune interactions as the underlying mechanisms for neuropathic pain including peripheral neuropathies, pain in rheumatoid arthritis and osteoarthritis, and bone cancer pain. The immune cells under scrutiny include macrophages, microglia, osteoclasts, and B cells, and their interactions with neurones in locations such as the dorsal root ganglia, blood-spinal cord barrier, spinal cord, and brain. Our hope is that this body of work may serve to furnish existing interest while also constituting a springboard of sorts for indispensable further investigation on neuroimmune interactions in chronic pain.

4.
Med Drug Discov ; 7: 100047, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904424

RESUMO

Chronic pain is a distressing yet poorly-treated condition that can arise as a result of diseases and injuries to the nervous system. The development of more efficacious therapies for chronic pain is essential and requires advances in our understanding of its underlying mechanisms. Clinical and preclinical evidence has demonstrated that immune responses play a crucial role in chronic pain. The lysosomal cysteine protease cathepsin S (CatS) plays a key role in such immune response. Here we discuss the preclinical evidence for the mechanistic importance of extracellular CatS in chronic pain focussing on studies utilising drugs and other pharmacological tools that target CatS activity. We also consider the use of CatS inhibitors as potential novel antihyperalgesics, highlighting that the route and timing of delivery would need to be tailored to the initial cause of pain in order to ensure the most effective use of such drugs.

5.
Pain ; 161(9): 2155-2166, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379221

RESUMO

ABSTRACT: Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. Persistent nociception without joint swelling was associated with low concentrations of the specialised proresolving LM Maresin 1 (MaR1) and high macrophage numbers in DRG. MaR1 application to cultured DRG neurons inhibited both capsaicin-induced increase of intracellular calcium ions and release of calcitonin gene-related peptide in a dose-dependent manner. Furthermore, in peritoneal macrophages challenged with lipopolysaccharide, MaR1 reduced proinflammatory cytokine expression. Systemic MaR1 administration caused sustained reversal of nociceptive hypersensitivity and reduced inflammatory macrophage numbers in DRG. Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.


Assuntos
Gânglios Espinais , Hiperalgesia , Animais , Peptídeo Relacionado com Gene de Calcitonina , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Macrófagos , Camundongos , Dor
6.
Brain Behav Immun ; 83: 248-259, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669344

RESUMO

Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1+ CCR2+ Ly6C+ TMEM119- cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.


Assuntos
Permeabilidade Capilar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neuralgia/fisiopatologia , Medula Espinal/irrigação sanguínea , Animais , Células Endoteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente
7.
Scand J Pain ; 20(1): 33-37, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31730538

RESUMO

Background Acute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia). Critical role for immune system cells in chronic pain Preclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain. Immune system reactions to peripheral nerve injuries At the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG. Immune system mechanisms in the central nervous system In the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms. Conclusions and implications Definition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


Assuntos
Sistema Imunitário/inervação , Neuralgia/fisiopatologia , Nociceptores/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia , Microglia , Monócitos , Traumatismos dos Nervos Periféricos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
8.
Neurobiol Pain ; 6: 100032, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223140

RESUMO

Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH2 behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1-/- mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1-/- mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca2+]i following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1-/- mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.

9.
J Neuroinflammation ; 15(1): 101, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625610

RESUMO

BACKGROUND: A dose-limiting side effect of chemotherapeutic agents such as vincristine (VCR) is neuropathic pain, which is poorly managed at present. Chemokine-mediated immune cell/neuron communication in preclinical VCR-induced pain forms an intriguing basis for the development of analgesics. In a murine VCR model, CX3CR1 receptor-mediated signalling in monocytes/macrophages in the sciatic nerve orchestrates the development of mechanical hypersensitivity (allodynia). CX3CR1-deficient mice however still develop allodynia, albeit delayed; thus, additional underlying mechanisms emerge as VCR accumulates. Whilst both patrolling and inflammatory monocytes express CX3CR1, only inflammatory monocytes express CCR2 receptors. We therefore assessed the role of CCR2 in monocytes in later stages of VCR-induced allodynia. METHODS: Mechanically evoked hypersensitivity was assessed in VCR-treated CCR2- or CX3CR1-deficient mice. In CX3CR1-deficient mice, the CCR2 antagonist, RS-102895, was also administered. Immunohistochemistry and Western blot analysis were employed to determine monocyte/macrophage infiltration into the sciatic nerve as well as neuronal activation in lumbar DRG, whilst flow cytometry was used to characterise monocytes in CX3CR1-deficient mice. In addition, THP-1 cells were used to assess CX3CR1-CCR2 receptor interactions in vitro, with Western blot analysis and ELISA being used to assess expression of CCR2 and proinflammatory cytokines. RESULTS: We show that CCR2 signalling plays a mechanistic role in allodynia that develops in CX3CR1-deficient mice with increasing VCR exposure. Indeed, the CCR2 antagonist, RS-102895, proves ineffective in mice possessing functional CX3CR1 receptors but reduces VCR-induced allodynia in CX3CR1-deficient mice, in which CCR2+ monocytes are elevated by VCR. We suggest that a novel interaction between CX3CR1 and CCR2 receptors in monocytes accounts for the therapeutic effect of RS-102895 in CX3CR1-deficient mice. Indeed, we observe that CCR2, along with its ligand, CCL2, is elevated in the sciatic nerve in CX3CR1-deficient mice, whilst in THP-1 cells (human monocytes), downregulating CX3CR1 upregulates CCR2 expression via p38 MAP kinase signalling. We also show that the CX3CR1-CCR2 interaction in vitro regulates the release of pronociceptive cytokines TNF-α and IL1ß. CONCLUSIONS: Our data suggests that CCL2/CCR2 signalling plays a crucial role in VCR-induced allodynia in CX3CR1-deficient mice, which arises as a result of an interaction between CX3CR1 and CCR2 in monocytes.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Monócitos/metabolismo , Dor/induzido quimicamente , Receptores CCR2/metabolismo , Receptores CXCR3/metabolismo , Transdução de Sinais/fisiologia , Vincristina/toxicidade , Animais , Benzoxazinas/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Transformada , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hiperalgesia/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Monócitos/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/patologia , Piperidinas/farmacologia , Receptores CCR2/genética , Receptores CXCR3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Front Mol Neurosci ; 10: 397, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230166

RESUMO

In cancer treatments a dose-limiting side-effect of chemotherapeutic agents is the development of neuropathic pain, which is poorly managed by clinically available drugs at present. Chemotherapy-induced painful neuropathy (CIPN) is a major cause of premature cessation of treatment and so a greater understanding of the underlying mechanisms and the development of novel, more effective therapies, is greatly needed. In some cases, only a weak correlation between chemotherapy-induced pain and neuronal damage is observed both clinically and preclinically. As such, a critical role for non-neuronal cells, such as immune cells, and their communication with neurons in CIPN has recently been appreciated. In this mini-review, we will discuss preclinical evidence for the role of monocytes/macrophages in the periphery in CIPN, with a focus on that which is associated with the chemotherapeutic agents vincristine and paclitaxel. In addition we will discuss the potential mechanisms that regulate monocyte/macrophage-neuron crosstalk in this context. Informed by preclinical data, we will also consider the value of monocytes/macrophages as therapeutic targets for the treatment of CIPN clinically. Approaches that manipulate the signaling pathways discussed in this review show both promise and potential pitfalls. Nonetheless, they are emerging as innovative therapeutic targets with CX3CL1/R1-regulation of monocyte/macrophage-neuron communication currently emerging as a promising front-runner.

11.
Nat Commun ; 8(1): 1778, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176651

RESUMO

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Assuntos
Exossomos/metabolismo , Gânglios Espinais/metabolismo , Macrófagos/imunologia , MicroRNAs/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/metabolismo , Exossomos/genética , Gânglios Espinais/citologia , Gânglios Espinais/lesões , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neuralgia/genética , Neuralgia/imunologia , Fagocitose , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
12.
J Neurochem ; 141(4): 520-531, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27973687

RESUMO

Chronic pain is a distressing condition, which is experienced even when the painful stimulus, whether surgery or disease related, has subsided. Current treatments for chronic pain show limited efficacy and come with a host of undesirable side-effects, and thus there is a need for new, more effective therapies to be developed. The mechanisms underlying chronic pain are not fully understood at present, although pre-clinical models have facilitated the progress of this understanding considerably in the last decade. The mechanisms underlying chronic pain were initially thought to be neurocentric. However, we now appreciate that non-neuronal cells play a significant role in nociceptive signalling through their communication with neurons. One of the major signalling pathways, which mediates neuron/non-neuronal communication, is chemokine signalling. In this review, we discuss selected chemokines that have been reported to play a pivotal role in the mechanisms underlying chronic pain in a variety of pre-clinical models. Approaches that target each of the chemokines discussed in this review come with their advantages and disadvantages; however, the inhibition of chemokine actions is emerging as an innovative therapeutic strategy, which is now reaching the clinic, with the chemokine Fractalkine and its CX3 CR1 receptor leading the way. This article is part of the special article series "Pain".


Assuntos
Quimiocinas/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/fisiologia , Humanos
13.
Pain ; 157(3): 666-676, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26574822

RESUMO

Severe pain is a common and debilitating complication of metastatic bone cancer. Current analgesics provide insufficient pain relief and often lead to significant adverse effects. In models of cancer-induced bone pain, pathological sprouting of sensory fibers at the tumor-bone interface occurs concomitantly with reactive astrocytosis in the dorsal horn of the spinal cord. We observed that calcitonin gene-related peptide (CGRP)-fiber sprouting in the bone was associated with an increase in CGRP content in sensory neuron cell bodies in the dorsal root ganglia (DRG) and increased basal and activity-evoked release of CGRP from their central terminals in the dorsal horn. Intrathecal administration of a peptide antagonist (α-CGRP8-37) attenuated referred allodynia in the hind paw ipsilateral to bone cancer. CGRP receptor components (CLR and RAMP1) were up-regulated in dorsal horn neurons and expressed by reactive astrocytes. In primary cultures of astrocytes, CGRP incubation led to a concentration-dependent increase of forskolin-induced cAMP production, which was attenuated by pretreatment with CGRP8-37. Furthermore, CGRP induced ATP release in astrocytes, which was inhibited by CGRP8-37. We suggest that the peripheral increase in CGRP content observed in cancer-induced bone pain is mirrored by a central increase in the extracellular levels of CGRP. This increase in CGRP not only may facilitate glutamate-driven neuronal nociceptive signaling but also act on astrocytic CGRP receptors and lead to release of ATP.


Assuntos
Neoplasias Ósseas/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Neoplasias Ósseas/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C3H , Técnicas de Cultura de Órgãos , Dor/patologia , Medula Espinal/patologia
14.
J Neurosci ; 35(23): 8959-69, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063927

RESUMO

G-protein receptor 84 (GPR84) is an orphan receptor that is induced markedly in monocytes/macrophages and microglia during inflammation, but its pathophysiological function is unknown. Here, we investigate the role of GPR84 in a murine model of traumatic nerve injury. Naive GPR84 knock-out (KO) mice exhibited normal behavioral responses to acute noxious stimuli, but subsequent to partial sciatic nerve ligation (PNL), KOs did not develop mechanical or thermal hypersensitivity, in contrast to wild-type (WT) littermates. Nerve injury increased ionized calcium binding adapter molecule 1 (Iba1) and phosphorylated p38 MAPK immunoreactivity in the dorsal horn and Iba1 and cluster of differentiation 45 expression in the sciatic nerve, with no difference between genotypes. PCR array analysis revealed that Gpr84 expression was upregulated in the spinal cord and sciatic nerve of WT mice. In addition, the expression of arginase-1, a marker for anti-inflammatory macrophages, was upregulated in KO sciatic nerve. Based on this evidence, we investigated whether peripheral macrophages behave differently in the absence of GPR84. We found that lipopolysaccharide-stimulated KO macrophages exhibited attenuated expression of several proinflammatory mediators, including IL-1ß, IL-6, and TNF-α. Forskolin-stimulated KO macrophages also showed greater cAMP induction, a second messenger associated with immunosuppression. In summary, our results demonstrate that GPR84 is a proinflammatory receptor that contributes to nociceptive signaling via the modulation of macrophages, whereas in its absence the response of these cells to an inflammatory insult is impaired.


Assuntos
Regulação da Expressão Gênica/genética , Limiar da Dor/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ciática/metabolismo , Ciática/fisiopatologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipersensibilidade/etiologia , Hipersensibilidade/genética , Inflamação/etiologia , Inflamação/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Medição da Dor , Estimulação Física/efeitos adversos , Receptores Acoplados a Proteínas G/genética , Ciática/patologia , Medula Espinal/metabolismo , Temperatura , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
J Clin Invest ; 124(5): 2023-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24743146

RESUMO

A major dose-limiting side effect associated with cancer-treating antineoplastic drugs is the development of neuropathic pain, which is not readily relieved by available analgesics. A better understanding of the mechanisms that underlie pain generation has potential to provide targets for prophylactic management of chemotherapy pain. Here, we delineate a pathway for pain that is induced by the chemotherapeutic drug vincristine sulfate (VCR). In a murine model of chemotherapy-induced allodynia, VCR treatment induced upregulation of endothelial cell adhesion properties, resulting in the infiltration of circulating CX3CR1⁺ monocytes into the sciatic nerve. At the endothelial-nerve interface, CX3CR1⁺ monocytes were activated by the chemokine CX3CL1 (also known as fractalkine [FKN]), which promoted production of reactive oxygen species that in turn activated the receptor TRPA1 in sensory neurons and evoked the pain response. Furthermore, mice lacking CX3CR1 exhibited a delay in the development of allodynia following VCR administration. Together, our data suggest that CX3CR1 antagonists and inhibition of FKN proteolytic shedding, possibly by targeting ADAM10/17 and/or cathepsin S, have potential as peripheral approaches for the prophylactic treatment of chemotherapy-induced pain.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Monócitos/metabolismo , Dor/metabolismo , Receptores de Quimiocinas/metabolismo , Vincristina/efeitos adversos , Animais , Antineoplásicos Fitogênicos/farmacologia , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Regulação da Expressão Gênica/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Dor/induzido quimicamente , Dor/genética , Dor/patologia , Receptores de Quimiocinas/genética , Vincristina/farmacologia
16.
Eur J Pharmacol ; 716(1-3): 120-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23528354

RESUMO

Treatment of chronic pain remains a clinical challenge and sufficient pharmacological management is difficult to achieve without concurrent adverse drug effects. Recently the concept of chronic pain as a solely neuron-mediated phenomenon has evolved and it is now appreciated that also glial cells are of critical importance in pain generation and modulation. Astrocytes are macroglial cells that have close structural relationships with neurons; they contact neuronal somata and dendrites and enwrap synapses, where small astrocytic processes have been shown to be highly motile. This organization allows astrocytes to directly influence and coordinate neurons located within their structural domains. Moreover, astrocytes form astroglial networks and calcium wave propagations can spread through neighbouring astrocytes. ATP, which is released from astrocytes in response to elevated intracellular calcium concentrations, can contribute to the central mechanisms in chronic pain via purinergic receptors. In this review we highlight the structural organization and the functionalities of astrocytes that allow them to undertake critical roles in pain processing and we stress the possibility that astrocytes contribute to chronic pain not via a single pathway, but by undertaking various roles depending on the pain condition.


Assuntos
Astrócitos/patologia , Dor Crônica/patologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Dor Crônica/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais
17.
Exp Neurol ; 234(2): 283-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21946268

RESUMO

A recent major conceptual advance has been the recognition of the importance of immune system-neuron interactions in the modulation of spinal pain processing. In particular, pro-inflammatory mediators secreted by immune competent cells such as microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Chemokines play a pivotal role in mediating neuronal-microglial communication which leads to increased nociception. Here we examine the evidence that one such microglial mediator, the lysosomal cysteine protease Cathepsin S (CatS), is critical for the maintenance of neuropathic pain via cleavage of the transmembrane chemokine Fractalkine (FKN). Both CatS and FKN mediate critical physiological functions necessary for immune regulation. As key mediators of homeostatic functions it is not surprising that imbalance in these immune processes has been implicated in autoimmune disorders including Multiple Sclerosis and Rheumatoid Arthritis, both of which are associated with chronic pain. Thus, impairment of the CatS/FKN signalling pair constitutes a novel therapeutic approach for the treatment of chronic pain.


Assuntos
Catepsinas/metabolismo , Quimiocina CX3CL1/metabolismo , Dor Crônica/metabolismo , Microglia/metabolismo , Nociceptividade/fisiologia , Transdução de Sinais/fisiologia , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/fisiopatologia , Dor Crônica/fisiopatologia , Humanos , Neuralgia/metabolismo , Neuralgia/fisiopatologia
18.
Arthritis Rheum ; 63(3): 819-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21360511

RESUMO

OBJECTIVE: To investigate the involvement of transient receptor potential ankyrin 1 (TRPA1) in inflammatory hyperalgesia mediated by tumor necrosis factor α(TNFα) and joint inflammation. METHODS: Mechanical hyperalgesia was assessed in CD1 mice, mice lacking functional TRP vanilloid 1 (TRPV1-/-) or TRPA1 (TRPA1-/-), or respective wildtype (WT) mice. An automated von Frey system was used, following unilateral intraplantar injection of TNFα or intraarticular injection of Freund's complete adjuvant (CFA). Knee swelling and histologic changes were determined in mice treated with intraarticular injections of CFA. RESULTS: TNFα induced cyclooxygenase-independent bilateral mechanical hyperalgesia in CD1 mice. The selective TRPV1 receptor antagonist SB-366791 had no effect on mechanical hyperalgesia when it was coinjected with TNFα, but intrathecally administered SB- 366791 attenuated bilateral hyperalgesia, indicating the central but not peripheral involvement of TRPV1 receptors. A decrease in pain sensitivity was also observed in TRPV1-/- mice. Intraplantar coadministration of the TRPA1 receptor antagonist AP-18 with TNFα inhibited bilateral hyperalgesia. Intrathecal treatment with AP-18 also reduced TNFα-induced hyperalgesia. CFA-induced mechanical hyperalgesia in CD1 mice was attenuated by AP-18 (administered by intraarticular injection 22 hours after the administration of CFA). Furthermore, intraarticular CFA­induced ipsilateral mechanical hyperalgesia was maintained for 3 weeks in TRPA1 WT mice. In contrast, TRPA1-/- mice exhibited mechanical hyperalgesia for only 24 hours after receiving CFA. CONCLUSION: Evidence suggests that endogenous activation of peripheral TRPA1 receptors plays a critical role in the development of TNFα-induced mechanical hyperalgesia and in sustaining the mechanical hyperalgesia observed after intraaarticular injection of CFA. These results suggest that blockade of TRPA1 receptors may be beneficial in reducing the chronic pain associated with arthritis.


Assuntos
Artrite Experimental/imunologia , Hiperalgesia/imunologia , Canais de Cátion TRPV/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adjuvantes Imunológicos/farmacologia , Anilidas/farmacologia , Animais , Artralgia/induzido quimicamente , Artralgia/imunologia , Artrite Experimental/induzido quimicamente , Cinamatos/farmacologia , Modelos Animais de Doenças , Feminino , Adjuvante de Freund/farmacologia , Hiperalgesia/induzido quimicamente , Injeções Intra-Articulares , Injeções Espinhais , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1 , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Fator de Necrose Tumoral alfa/farmacologia
19.
J Neuroimmunol ; 234(1-2): 19-26, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21295862

RESUMO

Immune-neuronal interactions contribute to neuropathic pain. Thus, immune-competent cells such as microglia may provide targets for pain relief, as may infiltrating lymphocytes. We evaluated the nature of the lymphocyte response in the spinal cord in association with the maintenance of neuropathic allodynia. We assessed T cell contribution to pain processing by targeting these cells with Glatiramer acetate (GA) which when administered systemically reversed neuropathic allodynia, inhibited microglia response and increased IL-10 and IL-4 expressing T cells in neuropathic dorsal horns. These studies advance understanding of lymphocyte contribution to chronic pain and reveal a new mechanism of T cell intervention.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/imunologia , Imunossupressores/uso terapêutico , Peptídeos/uso terapêutico , Linfócitos T/efeitos dos fármacos , Análise de Variância , Animais , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Citometria de Fluxo/métodos , Acetato de Glatiramer , Hiperalgesia/etiologia , Hiperalgesia/patologia , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Masculino , Proteínas dos Microfilamentos , Microglia/efeitos dos fármacos , Microglia/imunologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Ciática/complicações , Ciática/tratamento farmacológico , Medula Espinal/patologia , Linfócitos T/imunologia
20.
Brain ; 133(9): 2549-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802203

RESUMO

Pain remains an area of considerable unmet clinical need, and this is particularly true of pain associated with bone metastases, in part because existing analgesic drugs show only limited efficacy in many patients and in part because of the adverse side effects associated with these agents. An important issue is that the nature and roles of the algogens produced in bone that drive pain-signalling systems remain unknown. Here, we tested the hypothesis that adenosine triphosphate is one such key mediator through actions on P2X3 and P2X2/3 receptors, which are expressed selectively on primary afferent nocioceptors, including those innervating the bone. Using a well-established rat model of bone cancer pain, AF-353, a recently described potent and selective P2X3 and P2X2/3 receptor antagonist, was administered orally to rats and found to produce highly significant prevention and reversal of bone cancer pain behaviour. This attenuation occurred without apparent modification of the disease, since bone destruction induced by rat MRMT-1 carcinoma cells was not significantly altered by AF-353. Using in vivo electrophysiology, evidence for a central site of action was provided by dose-dependent reductions in electrical, mechanical and thermal stimuli-evoked dorsal horn neuronal hyperexcitability following direct AF-353 administration onto the spinal cord of bone cancer animals. A peripheral site of action was also suggested by studies on the extracellular release of adenosine triphosphate from MRMT-1 carcinoma cells. Moreover, elevated phosphorylated-extracellular signal-regulated kinase expression in dorsal root ganglion neurons, induced by co-cultured MRMT-1 carcinoma cells, was significantly reduced in the presence of AF-353. These data suggest that blockade of P2X3 and P2X2/3 receptors on both the peripheral and central terminals of nocioceptors contributes to analgesic efficacy in a model of bone cancer pain. Thus, systemic P2X3 and P2X2/3 receptor antagonists with central nervous system penetration may offer a promising therapeutic tool in treating bone cancer pain.


Assuntos
Dor/tratamento farmacológico , Dor/psicologia , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Administração Oral , Amidinas , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carcinoma/complicações , Carcinoma/patologia , Células Cultivadas , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/citologia , Hiperalgesia/tratamento farmacológico , Dor/diagnóstico por imagem , Dor/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Microtomografia por Raio-X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA