Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729070

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Assuntos
Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Mycobacterium abscessus/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Camundongos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia
2.
Leukemia ; 37(10): 2115-2124, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591942

RESUMO

Myelodysplastic neoplasm (MDS) is a hematopoietic stem cell disorder that may evolve into acute myeloid leukemia. Fatal infection is among the most common cause of death in MDS patients, likely due to myeloid cell cytopenia and dysfunction in these patients. Mutations in genes that encode components of the spliceosome represent the most common class of somatically acquired mutations in MDS patients. To determine the molecular underpinnings of the host defense defects in MDS patients, we investigated the MDS-associated spliceosome mutation U2AF1-S34F using a transgenic mouse model that expresses this mutant gene. We found that U2AF1-S34F causes a profound host defense defect in these mice, likely by inducing a significant neutrophil chemotaxis defect. Studies in human neutrophils suggest that this effect of U2AF1-S34F likely extends to MDS patients as well. RNA-seq analysis suggests that the expression of multiple genes that mediate cell migration are affected by this spliceosome mutation and therefore are likely drivers of this neutrophil dysfunction.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Quimiotaxia , Leucemia Mieloide Aguda/genética , Camundongos Transgênicos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Neutrófilos/metabolismo , Splicing de RNA , Fator de Processamento U2AF/genética
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446240

RESUMO

Mycobacterium abscessus, a species of nontuberculous mycobacteria (NTM), is an opportunistic pathogen that is readily cleared by healthy lungs but can cause pulmonary infections in people with chronic airway diseases. Although knowledge pertaining to molecular mechanisms of host defense against NTM is increasing, macrophage receptors that recognize M. abscessus remain poorly defined. Dectin-1, a C-type lectin receptor identified as a fungal receptor, has been shown to be a pathogen recognition receptor (PRR) for both M. tuberculosis and NTM. To better understand the role of Dectin-1 in host defense against M. abscessus, we tested whether blocking Dectin-1 impaired the uptake of M. abscessus by human macrophages, and we compared M. abscessus pulmonary infection in Dectin-1-deficient and wild-type mice. Blocking antibody for Dectin-1 did not reduce macrophage phagocytosis of M. abscessus, but did reduce the ingestion of the fungal antigen zymosan. Laminarin, a glucan that blocks Dectin-1 and other PRRs, caused decreased phagocytosis of both M. abscessus and zymosan. Dectin-1-/- mice exhibited no defects in the control of M. abscessus infection, and no differences were detected in immune cell populations between wild type and Dectin-1-/- mice. These data demonstrate that murine defense against M. abscessus pulmonary infection, as well as ingestion of M. abscessus by human macrophages, can occur independent of Dectin-1. Thus, additional PRR(s) recognized by laminarin participate in macrophage phagocytosis of M. abscessus.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Animais , Camundongos , Zimosan , Macrófagos , Fagocitose , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/microbiologia
4.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37293112

RESUMO

Mycobacterium abscessus is a nontuberculous mycobacterium emerging as a significant pathogen for individuals with chronic lung disease, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. New strategies of bacterial control based on host defenses are appealing, but anti-mycobacterial immune mechanisms are poorly understood and are complicated by the appearance of smooth and rough morphotypes with distinct host responses. We explored the role of the complement system in the clearance of M. abscessus morphotypes by neutrophils, an abundant cell in these infections. M. abscessus opsonized with plasma from healthy individuals promoted greater killing by neutrophils compared to opsonization in heat-inactivated plasma. Rough clinical isolates were more resistant to complement but were still efficiently killed. Complement C3 associated strongly with the smooth morphotype while mannose-binding lectin 2 was associated with the rough morphotype. M. abscessus killing was dependent on C3, but not on C1q or Factor B; furthermore, competition of mannose-binding lectin 2 binding with mannan or N-acetyl-glucosamine during opsonization did not inhibit killing. These data suggest that M. abscessus does not canonically activate complement through the classical, alternative, or lectin pathways. Complement-mediated killing was dependent on IgG and IgM for smooth and on IgG for rough M. abscessus. Both morphotypes were recognized by Complement Receptor 3 (CD11b), but not CR1 (CD35), and in a carbohydrate- and calcium-dependent manner. These data suggest the smooth-to-rough adaptation changes complement recognition of M. abscessus and that complement is an important factor for M. abscessus infection.

5.
Microbiol Spectr ; 11(1): e0327922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651756

RESUMO

Nontuberculous mycobacteria (NTM), including Mycobacterium avium, are clinically important pathogens in cystic fibrosis (CF). The innate immune response to M. avium remains incompletely understood. We evaluated the role of complement opsonization in neutrophil-mediated killing of M. avium. Killing assays were performed using neutrophils from healthy donors (HDs) and persons with CF (pwCF). Clinical isolates of M. avium were opsonized with plasma from HDs or pwCF, which was intact or heat-treated to inactivate complement. HD neutrophils had killing activity against M. avium opsonized with intact HD plasma and killing was significantly reduced when M. avium was opsonized with heat-inactivated HD plasma. When opsonized with HD plasma, CF neutrophils had killing activity against M. avium that was not different than HD neutrophils. When opsonized with intact plasma from pwCF, HD neutrophil killing of M. avium was significantly reduced. Opsonization of M. avium with C3-depleted serum or IgM-depleted plasma resulted in significantly reduced killing. Plasma C3 levels were elevated in pwCF with NTM infection compared to pwCF without NTM infection. These studies demonstrate that human neutrophils efficiently kill M. avium when opsonized in the presence of plasma factors from HD that include C3 and IgM. Killing efficiency is significantly lower when the bacteria are opsonized with plasma from pwCF. This indicates a novel role for opsonization in neutrophil killing of M. avium and a deficiency in complement opsonization as a mechanism of impaired M. avium killing in CF. IMPORTANCE Mycobacterium avium is a member of a group of bacterial species termed nontuberculous mycobacteria (NTM) that cause lung disease in certain populations, including persons with cystic fibrosis (CF). NTM infections are challenging to diagnose and can be even more difficult to treat. This study investigated how the immune system responds to M. avium infection in CF. We found that neutrophils, the most abundant immune cell in the lungs in CF, can effectively kill M. avium in individuals both with and without CF. Another component of the immune response called the complement system is also required for this process. Levels of complement proteins are altered in persons with CF who have a history of NTM compared to those without a history of NTM infection. These results add to our understanding of how the immune system responds to M. avium, which can help pave the way toward better diagnostic and treatment strategies.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Humanos , Fibrose Cística/microbiologia , Neutrófilos , Mycobacterium avium , Opsonização , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Proteínas do Sistema Complemento , Imunoglobulina M
6.
Tuberculosis (Edinb) ; 138: 102276, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417800

RESUMO

Nontuberculous mycobacteria (NTM) are opportunistic pathogens that affect a relatively small but significant portion of the people with cystic fibrosis (CF), and may cause increased morbidity and mortality in this population. Cultures from the airway are the only test currently in clinical use for detecting NTM. Culture techniques used in clinical laboratories are insensitive and poorly suited for population screening or to follow progression of disease or treatment response. The lack of sensitive and quantitative markers of NTM in the airway impedes patient care and clinical trial design, and has limited our understanding of patterns of acquisition, latency and pathogenesis of disease. Culture-independent markers of NTM infection have the potential to overcome many of the limitations of standard NTM cultures, especially the very slow growth, inability to quantitate bacterial burden, and low sensitivity due to required decontamination procedures. A range of markers have been identified in sputum, saliva, breath, blood, urine, as well as radiographic studies. Proposed markers to detect presence of NTM or transition to NTM disease include bacterial cell wall products and DNA, as well as markers of host immune response such as immunoglobulins and the gene expression of circulating leukocytes. In all cases the sensitivity of culture-independent markers is greater than standard cultures; however, most do not discriminate between various NTM species. Thus, each marker may be best suited for a specific clinical application, or combined with other markers and traditional cultures to improve diagnosis and monitoring of treatment response.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Humanos , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Pulmão
7.
Microbiol Spectr ; 10(4): e0187422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863022

RESUMO

Nontuberculous mycobacteria (NTM) infections are increasingly prevalent in chronic lung diseases, including cystic fibrosis (CF). Mycobacterium abscessus is of particular concern due to relatively greater virulence and intrinsic antimicrobial resistance. Airway culture identification, the standard method for detecting pulmonary infection, is hindered by low sensitivity, long culture times, and reliance on sputum production or lavage. A culture-independent test for detecting NTM infection could complement, or replace, sputum culture, which is becoming more difficult to obtain with reduced sputum production by people with CF (pwCF) on highly effective modulator therapy. We describe an assay for the detection of plasma anti-M. abscessus antibodies of pwCF to antigens from M. abscessus lysates. Anti-M. abscessus IgG and IgA, but not IgM, discriminated with high specificity subjects infected with M. abscessus from those infected by M. avium complex, and from those with distant or no NTM infections. The IgG3 subclass predominated with minor contributions by other subclasses. Both aqueous and organic soluble antigens were recognized by plasma IgG. A validation cohort measuring IgG and IgG3 identified M. abscessus positive subjects, and elevated IgG was sustained over several years. These studies show the benefit of M. abscessus cell lysates to detect plasma IgG of subjects with CF and M. abscessus infections. Subclass analysis suggests that IgG3 is the predominant subtype in these subjects with chronic bacterial infections suggesting a defect in class maturation. Serodiagnosis could be useful to monitor M. abscessus group infections in chronic lung disease as an adjunct or alternative to culture. IMPORTANCE Lung infections with nontuberculous mycobacteria (NTM), and particularly Mycobacterium abscessus, a pathogen with high antibiotic resistance, are of great concern due to poor clinical outcomes and challenging detection in people with cystic fibrosis and other diseases. Standard detection methods are insensitive and increasingly difficult. We describe the measurement of NTM-specific antibodies from plasma to identify subjects infected with M. abscessus. The assay is sensitive and provides information on the immune response to NTM infections. This assay could be used to help identify subjects with NTM pulmonary infections and track disease progression, either alone or in conjunction with other tests.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Imunoglobulina G , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas
8.
Cell ; 185(11): 1860-1874.e12, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35568033

RESUMO

Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.


Assuntos
Bacteriófagos , Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Fibrose Cística/tratamento farmacológico , Humanos , Pulmão , Masculino , Infecções por Mycobacterium não Tuberculosas/terapia , Mycobacterium abscessus/fisiologia
9.
PLoS One ; 17(5): e0267592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511761

RESUMO

Inhaled antibiotics control chronic airway infection and maintain respiratory health in cystic fibrosis (CF). Given variation in patient responses to inhaled antibiotics, the ability to identify distinct responder phenotypes would facilitate the delivery of personalized care. Previously, a 10-gene panel was identified, measured directly from blood leukocytes, which predicted host response to intravenous antibiotic treatment during pulmonary exacerbations. In the current study, we tested whether the same panel predicted clinical response in subjects receiving a month of inhaled antibiotic therapy with aztreonam lysine (AZLI; Cayston®). A small cohort of CF subjects infected with Pseudomonas aeruginosa were enrolled at baseline health, prior to initiating one month's treatment with AZLI using the Altera® nebulizer system. Eighteen CF subjects underwent blood leukocyte gene panel measurements, sputum quantitative microbiology, spirometry, and C-reactive protein (CRP) measurement prior to onset and at completion of 4 weeks of AZLI therapy. Mean absolute improvement in percent predicted Forced Expiratory Volume in one second (ppFEV1) was 3%. Significant reductions in sputum bacterial colony counts were detected with treatment. CRP increased following treatment. While single genes within the panel did not change significantly following treatment, the analysis of multigene panel data demonstrated that HCA112 gene predicted ppFEV1 improvement. Hierarchical clustering based on gene expression yielded two distinctive molecular clusters before and after AZLI therapy. In conclusion, peripheral blood leukocyte genes quantifying inflammation are associated with responses to inhaled antibiotic therapy. Molecular quantification of systemic inflammation may indicate subgroups of CF subjects with variations in underlying inflammation and with variable clinical responses to inhaled antibiotics. Given the size limitation of the study, larger studies are needed in order to evaluate whether molecular measures may add precision to the determination of infectious and inflammatory outcomes following courses of inhaled antimicrobial therapies. Clinical Trials.gov Identifier: NCT01736839.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Administração por Inalação , Antibacterianos/uso terapêutico , Biomarcadores , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Humanos , Inflamação/tratamento farmacológico , Estudos Prospectivos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , RNA Mensageiro , Escarro/microbiologia
10.
J Cyst Fibros ; 19(5): 801-807, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32624408

RESUMO

BACKGROUND: Individuals with Cystic fibrosis (CF) are the most vulnerable population for pulmonary infection with nontuberculous mycobacteria (NTM). Screening, diagnosis, and assessment of treatment response currently depend on traditional culture techniques, but sputum analysis for NTM in CF is challenging, and associated with a low sensitivity. The cell wall lipoarabinomannan (LAM), a lipoglycan found in all mycobacterial species, and has been validated as a biomarker in urine for active Mycobacterium tuberculosis infection. METHODS: Urine from a CF cohort (n = 44) well-characterized for NTM infection status by airway cultures was analyzed for LAM by gas chromatography/mass spectrometry. All subjects with positive sputum cultures for NTM had varying amounts of LAM in their urine. No LAM was detected in subjects who never had a positive culture (14/45). One individual initially classified as NTM sputum negative subsequently developed NTM disease 657 days after the initial urine LAM testing. Repeat urine LAM testing turned positive, correlating to her positive NTM status. Subjects infected with subspecies of M. abscessus had greater LAM quantities than those infected with M. avium complex (MAC). There was no correlation with disease activity or treatment status and LAM quantity. A TB Capture ELISA using anti-LAM antibodies demonstrated very poor sensitivity in identifying individuals with positive NTM sputum cultures. CONCLUSION: These findings support the conclusion that urine LAM related to NTM infection may be a useful screening test to determine patients at low risk for having a positive NTM sputum culture, as part of a lifetime screening strategy in the CF population.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/urina , Lipopolissacarídeos/urina , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/urina , Adolescente , Adulto , Biomarcadores/urina , Criança , Estudos de Coortes , Fibrose Cística/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Escarro/microbiologia , Adulto Jovem
11.
ACS Infect Dis ; 6(8): 2143-2154, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32551551

RESUMO

Understanding the physiological processes underlying the ability of Mycobacterium abscessus to become a chronic pathogen of the cystic fibrosis (CF) lung is important to the development of prophylactic and therapeutic strategies to better control and treat pulmonary infections caused by these bacteria. Gene expression profiling of a diversity of M. abscessus complex isolates points to amino acids being significant sources of carbon and energy for M. abscessus in both CF sputum and synthetic CF medium and to the bacterium undergoing an important metabolic reprogramming in order to adapt to this particular nutritional environment. Cell envelope analyses conducted on the same representative isolates further revealed unexpected structural alterations in major cell surface glycolipids known as the glycopeptidolipids (GPLs). Besides showing an increase in triglycosylated forms of these lipids, CF sputum- and synthetic CF medium-grown isolates presented as yet unknown forms of GPLs representing as much as 10% to 20% of the total GPL content of the cells, in which the classical amino alcohol located at the carboxy terminal of the peptide, alaninol, is replaced with the branched-chain amino alcohol leucinol. Importantly, both these lipid changes were exacerbated by the presence of mucin in the culture medium. Collectively, our results reveal potential new drug targets against M. abscessus in the CF airway and point to mucin as an important host signal modulating the cell surface composition of this pathogen.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Glicolipídeos , Humanos , Mycobacterium abscessus/genética , Escarro
12.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32423916

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly prevalent in chronic lung disease, including cystic fibrosis, and infections are characterized by neutrophil-dominated environments. However, mechanisms of immune control are poorly understood. Azithromycin, a macrolide antibiotic with immunomodulatory effects, is used to treat M. abscessus infections. Recently, inhibition of macrophage bactericidal autophagy was described for azithromycin, which could be detrimental to the host. Therefore, we explored the role of autophagy in mycobactericidal neutrophils. Azithromycin did not affect M. abscessus-induced neutrophil reactive oxygen species formation, phagocytosis, or cytokine secretion, and neutrophils treated with azithromycin killed M. abscessus equally as well as untreated neutrophils from either healthy or cystic fibrosis subjects. One clinical isolate was killed more effectively in azithromycin-treated neutrophils, suggesting that pathogen-specific factors may interact with an azithromycin-sensitive pathway. Chloroquine and rapamycin, an inhibitor and an activator of autophagy, respectively, also failed to affect mycobactericidal activity, suggesting that autophagy was not involved. However, wortmannin, an inhibitor of intracellular trafficking, inhibited mycobactericidal activity, but as a result of inhibiting phagocytosis. The effects of these autophagy-modifying agents and azithromycin in neutrophils from healthy subjects were similar between the smooth and rough morphotypes of M. abscessus However, in cystic fibrosis neutrophils, wortmannin inhibited killing of a rough clinical isolate and not a smooth isolate, suggesting that unique host-pathogen interactions exist in cystic fibrosis. These studies increase our understanding of M. abscessus virulence and of neutrophil mycobactericidal mechanisms. Insight into the immune control of M. abscessus may provide novel targets of therapy.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Fibrose Cística/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium abscessus/imunologia , Neutrófilos/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Estudos de Casos e Controles , Quimiocina CCL4/genética , Quimiocina CCL4/imunologia , Cloroquina/farmacologia , Fibrose Cística/genética , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunossupressores/farmacologia , Interleucina-8/genética , Interleucina-8/imunologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Wortmanina/farmacologia
13.
PLoS One ; 13(4): e0196120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672589

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, are increasingly present in soft tissue infections and chronic lung diseases, including cystic fibrosis, and infections are characterized by growth in neutrophil-rich environments. M. abscessus is observed as two distinct smooth and rough morphotypes. The environmental smooth morphotype initiates infection and has a relatively limited ability to activate neutrophils. The rough morphotype has increased virulence and immunogenicity. However, the neutrophil response to the rough morphotype has not been explored. Killing of the smooth and rough strains, including cystic fibrosis clinical isolates, was equivalent. Neutrophil uptake of M. abscessus was similar between morphotypes. Mechanistically, both rough and smooth morphotypes enhanced neutrophil reactive oxygen species generation but inhibition of NADPH oxidase activity did not affect M. abscessus viability. However, inhibition of phagocytosis and extracellular traps reduced killing of the smooth morphotype with lesser effects against the rough morphotype. Neutrophils treated with M. abscessus released a heat-labile mycobactericidal activity against the rough morphotype, but the activity was heat-tolerant against the smooth morphotype. Overall, M. abscessus stimulates ineffective neutrophil reactive oxygen species generation, and key mechanisms differ in killing of the smooth (phagocytosis-dependent, extracellular traps, and heat-tolerant secreted factor) and rough (extracellular traps and a heat-labile secreted factor) morphotypes. These studies represent an essential advancement in understanding the host response to M. abscessus, and help explain the recalcitrance of infection.


Assuntos
Citotoxicidade Imunológica , Mycobacterium abscessus/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Citocinas/metabolismo , Espaço Extracelular/imunologia , Espaço Extracelular/metabolismo , Espaço Extracelular/microbiologia , Armadilhas Extracelulares , Humanos , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Viabilidade Microbiana/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Neutrófilos/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
14.
Ann Am Thorac Soc ; 15(5): 589-598, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29425066

RESUMO

RATIONALE: Cystic fibrosis pulmonary exacerbations accelerate pulmonary decline and increase mortality. Previously, we identified a 10-gene leukocyte panel measured directly from whole blood, which indicates response to exacerbation treatment. We hypothesized that molecular characteristics of exacerbations could also predict future disease severity. OBJECTIVES: We tested whether a 10-gene panel measured from whole blood could identify patient cohorts at increased risk for severe morbidity and mortality, beyond standard clinical measures. METHODS: Transcript abundance for the 10-gene panel was measured from whole blood at the beginning of exacerbation treatment (n = 57). A hierarchical cluster analysis of subjects based on their gene expression was performed, yielding four molecular clusters. An analysis of cluster membership and outcomes incorporating an independent cohort (n = 21) was completed to evaluate robustness of cluster partitioning of genes to predict severe morbidity and mortality. RESULTS: The four molecular clusters were analyzed for differences in forced expiratory volume in 1 second, C-reactive protein, return to baseline forced expiratory volume in 1 second after treatment, time to next exacerbation, and time to morbidity or mortality events (defined as lung transplant referral, lung transplant, intensive care unit admission for respiratory insufficiency, or death). Clustering based on gene expression discriminated between patient groups with significant differences in forced expiratory volume in 1 second, admission frequency, and overall morbidity and mortality. At 5 years, all subjects in cluster 1 (very low risk) were alive and well, whereas 90% of subjects in cluster 4 (high risk) had suffered a major event (P = 0.0001). In multivariable analysis, the ability of gene expression to predict clinical outcomes remained significant, despite adjustment for forced expiratory volume in 1 second, sex, and admission frequency. The robustness of gene clustering to categorize patients appropriately in terms of clinical characteristics, and short- and long-term clinical outcomes, remained consistent, even when adding in a secondary population with significantly different clinical outcomes. CONCLUSIONS: Whole blood gene expression profiling allows molecular classification of acute pulmonary exacerbations, beyond standard clinical measures, providing a predictive tool for identifying subjects at increased risk for mortality and disease progression.


Assuntos
Proteína C-Reativa/genética , Fibrose Cística/genética , Perfilação da Expressão Gênica , Adulto , Biomarcadores/sangue , Colúmbia Britânica/epidemiologia , Proteína C-Reativa/metabolismo , Colorado/epidemiologia , Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Morbidade/tendências , Prognóstico , Estudos Prospectivos , Índice de Gravidade de Doença , Taxa de Sobrevida/tendências , Fatores de Tempo
15.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754702

RESUMO

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium (NTM) increasingly reported in soft tissue infections and chronic lung diseases, including cystic fibrosis. The environmental source of M. abscessus has not been definitively identified, but NTM have been detected in soil and water. To determine the potential of soil-derived M. abscessus as an infectious source, we explored the association, growth, and survival of M. abscessus with defined mineral particulates, including kaolin, halloysite, and silicone dioxide, and house dust as possible M. abscessus fomites. M. abscessus physically associated with particulates, and the growth of M. abscessus was enhanced in the presence of both kaolin and house dust. M. abscessus survived desiccation for 2 weeks but was not viable after 3 weeks. The rate of decline of M. abscessus viability during desiccation was reduced in the presence of house dust. The evidence for enhanced growth and survival of M. abscessus during alternating growth and drying periods suggests that dissemination could occur when in wet or dry environments. These studies are important to understand environmental survival and acquisition of NTM.IMPORTANCE The environmental source of pulmonary Mycobacterium abscessus infections is not known. Fomites are nonliving carriers of infectious agents and may contribute to acquisition of M. abscessus This study provides evidence that M. abscessus growth is enhanced in the presence of particulates, using kaolin, an abundant natural clay mineral, and house dust as experimental fomites. Moreover, M. abscessus survived desiccation for up to 2 weeks in the presence of house dust, kaolin, and several chemically defined mineral particulates; mycobacterial viability during extended periods of dessication was enhanced by the presence of house dust. The growth characteristics of M. abscessus with particulates suggest that a fomite mechanism of transmission may contribute to M. abscessus acquisition, which may lead to strategies to better control infections by M. abscessus and related organisms.


Assuntos
Fômites/microbiologia , Infecções por Mycobacterium não Tuberculosas/transmissão , Mycobacterium abscessus/fisiologia , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/crescimento & desenvolvimento
16.
J Cyst Fibros ; 16(3): 358-366, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28025037

RESUMO

BACKGROUND: Concomitant use of oral azithromycin and inhaled tobramycin occurs in approximately half of US cystic fibrosis (CF) patients. Recent data suggest that this combination may be antagonistic. METHODS: Test the hypothesis that azithromycin reduces the clinical benefits of tobramycin by analyses of clinical trial data, in vitro modeling of P. aeruginosa antibiotic killing, and regulation of the MexXY efflux pump. RESULTS: Ongoing administration of azithromycin associates with reduced ability of inhaled tobramycin, as compared with aztreonam, to improve lung function and quality of life in a completed clinical trial. In users of azithromycin FEV1 (L) increased 0.8% during a 4-week period of inhaled tobramycin and an additional 6.4% during a subsequent 4-week period of inhaled aztreonam (P<0.005). CFQ-R respiratory symptom score decreased 1.8 points during inhaled tobramycin and increased 8.3 points during subsequent inhaled aztreonam (P<0.001). A smaller number of trial participants not using azithromycin had similar improvement in lung function and quality of life scores during inhaled tobramycin and inhaled aztreonam. In vitro, azithromycin selectively reduced the bactericidal effects tobramycin in cultures of clinical strains of P. aeruginosa, while up regulating antibiotic resistance through MexXY efflux. CONCLUSIONS: Azithromycin appears capable of reducing the antimicrobial benefits of tobramycin by inducing adaptive bacterial stress responses in P. aeruginosa, suggesting that these medications together may not be optimal chronic therapy for at least some patients.


Assuntos
Azitromicina , Aztreonam , Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Azitromicina/administração & dosagem , Azitromicina/farmacocinética , Aztreonam/administração & dosagem , Aztreonam/farmacocinética , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Fibrose Cística/psicologia , Vias de Administração de Medicamentos , Interações Medicamentosas , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Masculino , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Testes de Função Respiratória/métodos , Tobramicina/administração & dosagem , Tobramicina/farmacocinética , Resultado do Tratamento , Adulto Jovem
17.
PLoS One ; 10(2): e0117657, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25675351

RESUMO

Pulmonary infections with Mycobacterium abscessus (M. abscessus) are increasingly prevalent in patients with lung diseases such as cystic fibrosis. M. abscessus exists in two morphotypes, smooth and rough, but the impact of morphotype on virulence is unclear. We developed an immune competent mouse model of pulmonary M. abscessus infection and tested the differences in host inflammatory response between the morphotypes of M. abscessus. Smooth and rough morphotypes of M. abscessus were isolated from the same American Type Culture Collection strain. Wild type and cystic fibrosis mice were intratracheally inoculated with known quantities of M. abscessus suspended in fibrin plugs. At the time of sacrifice lung and splenic tissues and bronchoalveolar lavage fluid were collected and cultured. Bronchoalveolar lavage fluid was analyzed for leukocyte count, differential and cytokine expression. Pulmonary infection with M. abscessus was present at both 3 days and 14 days post-inoculation in all groups at greater levels than systemic infection. Inoculation with M. abscessus rough morphotype resulted in more bronchoalveolar lavage fluid neutrophils compared to smooth morphotype at 14 days post-inoculation in both wild type (p = 0.01) and cystic fibrosis (p<0.01) mice. Spontaneous in vivo conversion from smooth to rough morphotype occurred in 12/57 (21%) of mice. These mice trended towards greater weight loss than mice in which morphotype conversion did not occur. In the described fibrin plug model of M. abscessus infection, pulmonary infection with minimal systemic dissemination is achieved with both smooth and rough morphotypes. In this model M. abscessus rough morphotype causes a greater host inflammatory response than the smooth based on bronchoalveolar lavage fluid neutrophil levels.


Assuntos
Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/citologia , Animais , Carga Bacteriana , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/patologia , Camundongos , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/patologia , Neutrófilos/patologia , Baço/microbiologia , Baço/patologia
18.
J Allergy Clin Immunol ; 135(2): 517-527.e12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25498313

RESUMO

BACKGROUND: Deficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder. OBJECTIVES: We sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense. METHODS: Wild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated. RESULTS: As demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo. CONCLUSIONS: Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD.


Assuntos
Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/metabolismo , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Tiazolidinedionas/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/deficiência , Neutrófilos/imunologia , Neutrófilos/metabolismo , PPAR gama/metabolismo , Fagócitos/microbiologia , Fagocitose/imunologia , Pioglitazona , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/imunologia , Superóxidos/metabolismo
19.
Antimicrob Agents Chemother ; 58(11): 6851-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182651

RESUMO

Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF) lung disease. Children with CF are routinely exposed to P. aeruginosa from the natural environment, and by adulthood, 80% of patients are chronically infected. P. aeruginosa in the CF airway exhibits a unique biofilm-like structure, where it grows in small clusters or aggregates of bacteria in association with abundant polymers of neutrophil-derived components F-actin and DNA, among other components. These aggregates differ substantially in size and appearance compared to surface-attached in vitro biofilm models classically utilized for studies but are believed to share properties of surface-attached biofilms, including antibiotic resistance. However, little is known about the formation and function of surface-independent modes of biofilm growth, how they might be eradicated, and quorum sensing communication. To address these issues, we developed a novel in vitro model of P. aeruginosa aggregates incorporating human neutrophil-derived products. Aggregates grown in vitro and those found in CF patients' sputum samples were morphologically similar; viable bacteria were distributed in small pockets throughout the aggregate. The lasA quorum sensing gene was differentially expressed in the presence of neutrophil products. Importantly, aggregates formed in the presence of neutrophils acquired resistance to tobramycin, which was lost when the aggregates were dispersed with DNase, and antagonism of tobramycin and azithromycin was observed. This novel yet simple in vitro system advances our ability to model infection of the CF airway and will be an important tool to study virulence and test alternative eradication strategies against P. aeruginosa.


Assuntos
Metaloproteases/biossíntese , Neutrófilos/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/genética , Fatores de Virulência/biossíntese , Antibacterianos/farmacologia , Azitromicina/farmacologia , Biofilmes , Fibrose Cística/complicações , Farmacorresistência Bacteriana Múltipla , Humanos , Metaloproteases/genética , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Escarro/microbiologia , Tobramicina/farmacologia , Fatores de Virulência/genética
20.
J Exp Med ; 210(5): 891-904, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23630228

RESUMO

Cancer and infection are predominant causes of human mortality and derive, respectively, from inadequate genomic and host defenses against environmental agents. The transcription factor p53 plays a central role in human tumor suppression. Despite its expression in immune cells and broad responsiveness to stressors, it is virtually unknown whether p53 regulates host defense against infection. We report that the lungs of naive p53(-/-) mice display genome-wide induction of NF-κB response element-enriched proinflammatory genes, suggestive of type 1 immune priming. p53-null and p53 inhibitor-treated mice clear Gram-negative and -positive bacteria more effectively than controls after intrapulmonary infection. This is caused, at least in part, by cytokines produced by an expanded population of apoptosis-resistant, TLR-hyperresponsive alveolar macrophages that enhance airway neutrophilia. p53(-/-) neutrophils, in turn, display heightened phagocytosis, Nox-dependent oxidant generation, degranulation, and bacterial killing. p53 inhibition boosts bacterial killing by mouse neutrophils and oxidant generation by human neutrophils. Despite enhanced bacterial clearance, infected p53(-/-) mice suffer increased mortality associated with aggravated lung injury. p53 thus modulates host defense through regulating microbicidal function and fate of phagocytes, revealing a fundamental link between defense of genome and host during environmental insult.


Assuntos
Linhagem da Célula/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Anti-Infecciosos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Citocinas/metabolismo , Feminino , Deleção de Genes , Genoma/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Óxido Nítrico/biossíntese , Pneumonia Bacteriana/patologia , Análise de Sobrevida , Receptores Toll-Like/metabolismo , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA