Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(15): 5151-5169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908737

RESUMO

Rationale: Despite recent advances in the use of adeno-associated viruses (AAVs) as potential vehicles for genetic intervention of central and peripheral nervous system-associated disorders, gene therapy for the treatment of neuropathology in adults has not been approved to date. The currently FDA-approved AAV-vector based gene therapies rely on naturally occurring serotypes, such as AAV2 or AAV9, which display limited or no transport across the blood-brain barrier (BBB) if systemically administered. Recently developed engineered AAV variants have shown broad brain transduction and reduced off-target liver toxicity in non-human primates (NHPs). However, these vectors lack spatial selectivity for targeted gene delivery, a potentially critical limitation for delivering therapeutic doses in defined areas of the brain. The use of microbubbles, in conjunction with focused ultrasound (FUS), can enhance regional brain AAV transduction, but methods to assess transduction in vivo are needed. Methods: In a murine model, we combined positron emission tomography (PET) and optical imaging of reporter gene payloads to non-invasively assess the spatial distribution and transduction efficiency of systemically administered AAV9 after FUS and microbubble treatment. Capsid and reporter probe accumulation are reported as percent injected dose per cubic centimeter (%ID/cc) for in vivo PET quantification, whereas results for ex vivo assays are reported as percent injected dose per gram (%ID/g). Results: In a study spanning accumulation and transduction, mean AAV9 accumulation within the brain was 0.29 %ID/cc without FUS, whereas in the insonified region of interest of FUS-treated mice, the spatial mean and maximum reached ~2.3 %ID/cc and 4.3 %ID/cc, respectively. Transgene expression assessed in vivo by PET reporter gene imaging employing the pyruvate kinase M2 (PKM2)/[18F]DASA-10 reporter system increased up to 10-fold in the FUS-treated regions, as compared to mice receiving AAVs without FUS. Systemic injection of AAV9 packaging the EF1A-PKM2 transgene followed by FUS in one hemisphere resulted in 1) an average 102-fold increase in PKM2 mRNA concentration compared to mice treated with AAVs only and 2) a 12.5-fold increase in the insonified compared to the contralateral hemisphere of FUS-treated mice. Conclusion: Combining microbubbles with US-guided treatment facilitated a multi-hour BBB disruption and stable AAV transduction in targeted areas of the murine brain. This unique platform has the potential to provide insight and aid in the translation of AAV-based therapies for the treatment of neuropathologies.


Assuntos
Dependovirus , Tomografia Computadorizada por Raios X , Camundongos , Animais , Dependovirus/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons , Vetores Genéticos
2.
Nucl Med Biol ; 124-125: 108382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37634399

RESUMO

PURPOSE: The aim of this study was to develop a positron emission tomography (PET) radiotracer for measuring pyruvate kinase M2 (PKM2) with improved physicochemical and pharmacokinetic properties compared to [18F]DASA-23. EXPERIMENTAL DESIGN: First, we synthesized [18F]DASA-10 and tested its uptake and retention compared to [18F]DASA-23 in human and mouse glioma cell lines. We then confirmed the specificity of [18F]DASA-10 by transiently modulating the expression of PKM2 in DU145 and HeLa cells. Next, we determined [18F]DASA-10 pharmacokinetics in healthy nude mice using PET imaging and subsequently assessed the ability of [18F]DASA-10 versus [18F]DASA-23 to enable in vivo detection of intracranial gliomas in syngeneic C6 rat models of glioma. RESULTS: [18F]DASA-10 demonstrated excellent cellular uptake and retention with values significantly higher than [18F]DASA-23 in all cell lines and timepoints investigated. [18F]DASA-10 showed a 73 % and 65 % reduced uptake respectively in DU145 and HeLa cells treated with PKM2 siRNA as compared to control siRNA treated cells. [18F]DASA-10 showed favorable biodistribution and pharmacokinetic properties and a significantly improved tumor-to-brain ratio in rat C6 glioma models relative to [18F]DASA-23 (3.2 ± 0.8 versus 1.6 ± 0.3, p = 0.01). CONCLUSION: [18F]DASA-10 is a new PET radiotracer for molecular imaging of PKM2 with potential to overcome the prior limitations observed with [18F]DASA-23. [18F]DASA-10 shows promise for clinical translation to enable imaging of brain malignancies owing to its low background signal in the healthy brain.


Assuntos
Glioma , Piruvato Quinase , Camundongos , Humanos , Ratos , Animais , Células HeLa , Piruvato Quinase/metabolismo , Camundongos Nus , Distribuição Tecidual , Glioma/diagnóstico por imagem , RNA Interferente Pequeno/metabolismo
3.
J Med Chem ; 62(24): 11416-11422, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31724859

RESUMO

New tritarget small molecules combining Ca2+ channels blockade, cholinesterase, and H3 receptor inhibition were obtained by multicomponent synthesis. Compound 3p has been identified as a very promising lead, showing good Ca2+ channels blockade activity (IC50 = 21 ± 1 µM), potent affinity against hH3R (Ki = 565 ± 62 nM), a moderate but selective hBuChE inhibition (IC50 = 7.83 ± 0.10 µM), strong antioxidant power (3.6 TE), and ability to restore cognitive impairment induced by lipopolysaccharide.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores Histamínicos H3/química , Bibliotecas de Moléculas Pequenas/farmacologia , Vasodilatadores/farmacologia , Doença de Alzheimer/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/química , Inibidores da Colinesterase/química , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas , Vasodilatadores/química
4.
Bioorg Chem ; 91: 103205, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31446330

RESUMO

In this work we describe the synthesis, Ca+2 channel blockade capacity and antioxidant power of N3,N5-bis(2-(5-methoxy-1H-indol-3-yl)ethyl)-2,6-dimethyl-4-aryl-1,4-dihydropyridine-3,5-dicarboxamides 1-9, a number of multi-target small 1,4-dihydropyridines (DHP), designed by juxtaposition of melatonin and nimodipine. As a result, we have identified antioxidant DHP 7 (Ca2+ channel blockade: 55%, and 8.78 Trolox/Equivalents), the most balanced DHP analyzed here, for potential Alzheimer's disease therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Cálcio/metabolismo , Di-Hidropiridinas/farmacologia , Neuroblastoma/tratamento farmacológico , Humanos , Melatonina/farmacologia , Neuroblastoma/patologia , Nimodipina/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA