Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 16(5): 658-670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453568

RESUMO

Group 3 innate lymphoid cells (ILC3) are potent effector cells with critical roles in enforcing immunity, barrier integrity and tissue homeostasis along the gastrointestinal tract. ILC3 are considered primarily tissue-resident cells, seeding the gastrointestinal tract during embryonic stages and early life. However, the mechanisms through which mature ILC3 are maintained within adult tissues are poorly understood. Here, we report that lymphoid tissue-inducer-like (LTi-like) ILC3 exhibit minimal turnover in the healthy adult intestinal tract, persist for extended periods of time, and display a quiescent phenotype. Strikingly, during enteric bacterial infection LTi-like ILC3 also exhibit negligible hematopoietic replenishment and remain non-proliferative, despite robustly producing cytokines. Survival of LTi-like ILC3 was found to be dependent upon the balance between the metabolic activity required to drive effector function and anti-apoptotic programs. Notably, the pro-survival protein B-cell lymphoma-2 (Bcl-2) was required for the survival of LTi-like ILC3 ex vivo but was rendered partially dispensable if mitochondrial respiration was inhibited. Together we demonstrate LTi-like ILC3 are a tissue-resident, quiescent population that persist independently of hematopoietic replenishment to survive within the intestinal microenvironment.


Assuntos
Imunidade Inata , Linfócitos , Tecido Linfoide/metabolismo , Citocinas/metabolismo , Fenótipo
2.
Med Res Rev ; 43(5): 1537-1606, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37036061

RESUMO

Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.


Assuntos
Anti-Infecciosos , Neoplasias , Humanos , Neutrófilos , Imunidade Inata , Imunidade Adaptativa , Inflamação
3.
Front Immunol ; 13: 861251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275702

RESUMO

COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.


Assuntos
COVID-19 , Humanos , Granzimas/metabolismo , Perforina/metabolismo , Interleucina-15/metabolismo , Interleucina-18/metabolismo , SARS-CoV-2 , Fator de Necrose Tumoral alfa/metabolismo , Plaquetas/metabolismo , Integrina alfa1/metabolismo , Células Matadoras Naturais , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Antivirais/metabolismo , RNA/metabolismo
4.
Arthritis Rheumatol ; 74(7): 1257-1270, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35243819

RESUMO

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is a systemic inflammatory disease with childhood onset. Systemic JIA is associated with neutrophilia, including immature granulocytes, potentially driven by the growth factor granulocyte-colony stimulating factor (G-CSF). This study was undertaken to investigate the role of G-CSF in the pathology of systemic JIA. METHODS: Injection of Freund's complete adjuvant (CFA) in BALB/c mice induces mild inflammation and neutrophilia in wild-type (WT) mice and a more pronounced disease, reminiscent to that of JIA patients, in interferon-γ-knockout (IFNγ-KO) mice. Extramedullary myelopoiesis was studied in CFA-immunized mice by single-cell RNA sequencing, and the effect of G-CSF receptor (G-CSFR) blockage on neutrophil development and systemic JIA pathology was evaluated. Additionally, plasma G-CSF levels were measured in patients. RESULTS: Both in systemic JIA patients and in a corresponding mouse model, plasma G-CSF levels were increased. In the mouse model, we demonstrated that G-CSF is responsible for the observed neutrophilia and extramedullary myelopoiesis and the induction of immature neutrophils and myeloid-derived suppressor-like cells. Administration of a G-CSFR antagonizing antibody blocked the maturation and differentiation of neutrophils in CFA-immunized mice. In IFNγ-KO mice, treatment was associated with almost complete inhibition of arthritis due to reduced neutrophilia and osteoclast formation. Disease symptoms were ameliorated, but slight increases in interleukin-6 (IL-6), tumor necrosis factor, and IL-17 were detected upon G-CSFR inhibition in the IFNγ-KO mice, and were associated with mild increases in weight loss, tail damage, and immature red blood cells. CONCLUSION: We describe the role of G-CSF in a mouse model of systemic JIA and suggest an important role for G-CSF-induced myelopoiesis and neutrophilia in regulating the development of arthritis.


Assuntos
Artrite Juvenil , Fator Estimulador de Colônias de Granulócitos , Mielopoese , Animais , Artrite Juvenil/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/imunologia , Interferon gama/genética , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo
5.
Front Immunol ; 12: 766620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966386

RESUMO

Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.


Assuntos
Artrite Juvenil/imunologia , Granulócitos/imunologia , Homeostase/imunologia , Leucopoese/imunologia , Neutrófilos/imunologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Granulócitos/citologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Neutrófilos/citologia
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161279

RESUMO

Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.


Assuntos
Envelhecimento/patologia , Interleucina-6/metabolismo , Hipófise/patologia , Células-Tronco/patologia , Animais , Proliferação de Células , Inflamação/patologia , Camundongos , Organoides/patologia , Fenótipo , Análise de Célula Única , Transcriptoma/genética , Regulação para Cima/genética
7.
Front Immunol ; 12: 642778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777039

RESUMO

Systemic juvenile idiopathic arthritis (sJIA) is an immune disorder characterized by fever, skin rash, arthritis and splenomegaly. Recently, increasing number of sJIA patients were reported having lung disease. Here, we explored lung abnormalities in a mouse model for sJIA relying on injection of IFN-γ deficient (IFN-γ KO) mice with complete Freund's adjuvant (CFA). Monitoring of lung changes during development of sJIA using microcomputer tomography revealed a moderate enlargement of lungs, a decrease in aerated and increase in non-aerated lung density. When lung function and airway reactivity to methacholine was assessed, gender differences were seen. While male mice showed an increased tissue hysteresivity, female animals were characterized by an increased airway hyperactivity, mirroring ongoing inflammation. Histologically, lungs of sJIA-like mice showed subpleural and parenchymal cellular infiltrates and formation of small granulomas. Flow cytometric analysis identified immature and mature neutrophils, and activated macrophages as major cell infiltrates. Lung inflammation in sJIA-like mice was accompanied by augmented expression of IL-1ß and IL-6, two target cytokines in the treatment of sJIA. The increased expression of granulocyte colony stimulating factor, a potent inducer of granulopoiesis, in lungs of mice was striking considering the observed neutrophilia in patients. We conclude that development of sJIA in a mouse model is associated with lung inflammation which is distinct to the lung manifestations seen in sJIA patients. Our observations however underscore the importance of monitoring lung disease during systemic inflammation and the model provides a tool to explore the underlying mechanism of lung pathology in an autoinflammatory disease context.


Assuntos
Artrite Juvenil/complicações , Inflamação/etiologia , Pulmão/fisiopatologia , Animais , Artrite Juvenil/imunologia , Artrite Juvenil/patologia , Artrite Juvenil/fisiopatologia , Modelos Animais de Doenças , Feminino , Adjuvante de Freund/imunologia , Mediadores da Inflamação/análise , Interferon gama/fisiologia , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
J Clin Immunol ; 41(5): 1072-1084, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33666778

RESUMO

PURPOSE: Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) are clinically distinct autoinflammatory disorders caused by mutations in the pyrin-encoding gene MEFV. We investigated the transcriptional, phenotypical, and functional characteristics of patient neutrophils to explore their potential role in FMF and PAAND pathophysiology. METHODS: RNA sequencing was performed to discover transcriptional aberrancies. The phenotypical features, degranulation properties, and phagocytic capacity of neutrophils were assessed by flow cytometry. Production of reactive oxygen species (ROS), myeloperoxidase (MPO) release, and chemotactic responses were investigated via chemiluminescence, ELISA, and Boyden chamber assays, respectively. RESULTS: Neutrophils from PAAND and FMF patients showed a partially overlapping, activated gene expression profile with increased expression of S100A8, S100A9, S100A12, IL-4R, CD48, F5, MMP9, and NFKB. Increased MMP9 and S100A8/A9 expression levels were accompanied by high plasma concentrations of the encoded proteins. Phenotypical analysis revealed that neutrophils from FMF patients exhibited an immature character with downregulation of chemoattractant receptors CXCR2, C5aR, and BLTR1 and increased expression of Toll-like receptor 4 (TLR4) and TLR9. PAAND neutrophils displayed an increased random, but reduced CXCL8-induced migration. A tendency for enhanced random migration was observed for FMF neutrophils. PAAND neutrophils showed a moderately but significantly enhanced phagocytic activity as opposed to neutrophils from FMF patients. Neutrophils from both patient groups showed increased MPO release and ROS production. CONCLUSIONS: Neutrophils from patients with FMF and PAAND, carrying different mutations in the MEFV gene, share a pro-inflammatory phenotype yet demonstrate diverse features, underscoring the distinction between both diseases.


Assuntos
Febre Familiar do Mediterrâneo , Inflamação , Neutrófilos/imunologia , Pirina/genética , Dermatopatias , Adulto , Idoso , Calgranulina A/sangue , Calgranulina B/sangue , Citocinas/sangue , Febre Familiar do Mediterrâneo/sangue , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Peroxidase/imunologia , Fagocitose , Fenótipo , Dermatopatias/sangue , Dermatopatias/genética , Dermatopatias/imunologia , Transcriptoma , Adulto Jovem
9.
J Allergy Clin Immunol ; 146(5): 1180-1193, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32325141

RESUMO

BACKGROUND: The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease. OBJECTIVE: Our aim was to expand the spectrum of SEC61A1-mediated disease to include autosomal dominant SCN. METHODS: Whole exome sequencing findings were validated, and reported mutations were compared by Western blotting, Ca2+ flux assays, differentiation of transduced HL-60 cells, in vitro differentiation of primary CD34 cells, quantitative PCR for unfolded protein response (UPR) genes, and single-cell RNA sequencing on whole bone marrow. RESULTS: We identified a novel de novo missense mutation in SEC61A1 (c.A275G;p.Q92R) in a patient with SCN who was born to nonconsanguineous Belgian parents. The mutation results in diminished protein expression, disturbed protein translocation, and an increase in calcium leakage from the endoplasmic reticulum. In vitro differentiation of CD34+ cells recapitulated the patient's clinical arrest in granulopoiesis. The impact of Q92R-Sec61α1 on neutrophil maturation was validated by using HL-60 cells, in which transduction reduced differentiation into CD11b+CD16+ cells. A potential mechanism for this defect is the uncontrolled initiation of the unfolded protein stress response, with single-cell analysis of primary bone marrow revealing perturbed UPR in myeloid precursors and in vitro differentiation of primary CD34+ cells revealing upregulation of CCAAT/enhancer-binding protein homologous protein and immunoglobulin heavy chain binding protein UPR-response genes. CONCLUSION: Specific mutations in SEC61A1 cause SCN through dysregulation of the UPR.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Mutação/genética , Neutropenia/congênito , Neutrófilos/fisiologia , Canais de Translocação SEC/genética , Antígenos CD34/metabolismo , Transtornos Cromossômicos , Feminino , Genes Dominantes , Células HL-60 , Humanos , Neutropenia/genética , Linhagem , Análise de Célula Única , Resposta a Proteínas não Dobradas/genética , Sequenciamento do Exoma , Adulto Jovem
10.
J Immunol ; 203(12): 3339-3348, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31676671

RESUMO

Mice deficient in IFN-γ (IFN-γ knockout [KO] mice) develop a systemic inflammatory syndrome in response to CFA, in contrast to CFA-challenged wild-type (WT) mice who only develop a mild inflammation. Symptoms in CFA-challenged IFN-γ KO resemble systemic juvenile idiopathic arthritis (sJIA), a childhood immune disorder of unknown cause. Dysregulation of innate immune cells is considered to be important in the disease pathogenesis. In this study, we used this murine model to investigate the role of NK cells in the pathogenesis of sJIA. NK cells of CFA-challenged IFN-γ KO mice displayed an aberrant balance of activating and inhibitory NK cell receptors, lower expression of cytotoxic proteins, and a defective NK cell cytotoxicity. Depletion of NK cells (via anti-IL-2Rß and anti-Asialo-GM1 Abs) or blockade of the NK cell activating receptor NKG2D in CFA-challenged WT mice resulted in increased severity of systemic inflammation and appearance of sJIA-like symptoms. NK cells of CFA-challenged IFN-γ KO mice and from anti-NKG2D-treated mice showed defective degranulation capacities toward autologous activated immune cells, predominantly monocytes. This is in line with the increased numbers of activated inflammatory monocytes in these mice which was particularly reflected in the expression of CCR2, a chemokine receptor, and in the expression of Rae-1, a ligand for NKG2D. In conclusion, NK cells are defective in a mouse model of sJIA and impede disease development in CFA-challenged WT mice. Our findings point toward a regulatory role for NK cells in CFA-induced systemic inflammation via a NKG2D-dependent control of activated immune cells.


Assuntos
Artrite Juvenil/imunologia , Artrite Juvenil/metabolismo , Suscetibilidade a Doenças , Imunomodulação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Artrite Juvenil/patologia , Biomarcadores , Citotoxicidade Imunológica , Modelos Animais de Doenças , Imunofenotipagem , Interferon gama/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Osteoclastos/imunologia , Osteoclastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA