Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39229031

RESUMO

Alphaviruses are enveloped, single-stranded, positive-sense RNA viruses that often require transmission between arthropod and vertebrate hosts for their sustained propagation. Most alphaviruses encode an opal (UGA) termination codon in nonstructural protein 3 (nsP3) upstream of the viral polymerase, nsP4. The selective constraints underlying the conservation of the opal codon are poorly understood. Using primate and mosquito cells, we explored the role and selective pressure on the nsP3 opal codon through extensive mutational analysis in the prototype alphavirus, Sindbis virus (SINV). We found that the opal codon is highly favored over all other codons in primate cells under native 37°C growth conditions. However, this preference is diminished in mosquito and primate cells grown at a lower temperature. Thus, the primary determinant driving the selection of the opal stop codon is not host genetics but the passaging temperature. We show that the opal codon is preferred over amber and ochre termination codons because it results in the highest translational readthrough and polymerase production. However, substituting the opal codon with sense codons leads to excessive full-length polyprotein (P1234) production, which disrupts optimal nsP polyprotein processing, delays the switch from minus-strand to positive-strand RNA production, and significantly reduces SINV fitness at 37°C; this fitness defect is relieved at lower temperatures. A naturally occurring suppressor mutation unexpectedly compensates for a delayed transition from minus to genomic RNA production by also delaying the subsequent transition between genomic and sub-genomic RNA production. Our study reveals that the opal stop codon is the best solution for alphavirus replication at 37°C, producing enough nsP4 protein to maximize replication without disrupting nsP processing and RNA replication transitions needed for optimal fitness. Our study uncovers the intricate strategy dual-host alphaviruses use at a single codon to optimize fitness.

2.
Nat Commun ; 12(1): 490, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473122

RESUMO

Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization. We posit that short H2As are a class of "ready-made" oncohistones, whose inappropriate expression contributes to chromatin dysfunction in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Processamento Alternativo , Animais , Cromatina , Epigenômica , Feminino , Genômica , Humanos , Nucleossomos , Placenta , Gravidez , Regulação para Cima
3.
Mol Cell ; 81(3): 599-613.e8, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33373584

RESUMO

RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , Receptores Imunológicos/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/ultraestrutura , Epitopos , Evolução Molecular , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/ultraestrutura , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Receptores Imunológicos/genética , Receptores Imunológicos/ultraestrutura , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/ultraestrutura , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/ultraestrutura
4.
Elife ; 92020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930662

RESUMO

Host antiviral proteins engage in evolutionary arms races with viruses, in which both sides rapidly evolve at interaction interfaces to gain or evade immune defense. For example, primate TRIM5α uses its rapidly evolving 'v1' loop to bind retroviral capsids, and single mutations in this loop can dramatically improve retroviral restriction. However, it is unknown whether such gains of viral restriction are rare, or if they incur loss of pre-existing function against other viruses. Using deep mutational scanning, we comprehensively measured how single mutations in the TRIM5α v1 loop affect restriction of divergent retroviruses. Unexpectedly, we found that the majority of mutations increase weak antiviral function. Moreover, most random mutations do not disrupt potent viral restriction, even when it is newly acquired via a single adaptive substitution. Our results indicate that TRIM5α's adaptive landscape is remarkably broad and mutationally resilient, maximizing its chances of success in evolutionary arms races with retroviruses.


The evolutionary battle between viruses and the immune system is essentially a high-stakes arms race. The immune system makes antiviral proteins, called restriction factors, which can stop the virus from replicating. In response, viruses evolve to evade the effects of restriction factors. To counter this, restriction factors evolve too, and the cycle continues. The challenge for the immune system is that mammals do not evolve as fast as viruses. How then, in the face of this disadvantage, can the immune system hope to keep pace with viral evolution? One human antiviral protein that seems to have struggled to keep up is TRIM5α. In rhesus macaques, it is very effective at stopping the replication of HIV-1 and related viruses. But in humans, it is not effective at all. But why? Protein evolution happens due to small genetic mutations, but not every mutation makes a protein better. If a protein is resilient, it can tolerate lots of neutral or negative mutations without breaking, until it mutates in a way that makes it better. But, if a protein is fragile, even small changes can render it completely unable to do its job. It is possible that restriction factors, like TRIM5α, are evolutionarily 'fragile', and therefore easy to break. But it is difficult to test whether this is the case, because existing mutations have already passed the test of natural selection. This means that either the mutation is somehow useful for the protein, or that it is not harmful enough to be removed. Tenthorey et al. devised a way to introduce all possible changes to the part of TRIM5α that binds to viruses. This revealed that TRIM5α is not fragile; most random mutations increased, rather than decreased, the protein's ability to prevent viral infection. In fact, it appears it would only take a single mutation to make TRIM5α better at blocking HIV-1 in humans, and there are many possible single mutations that would work. Thus, it would appear that human TRIM5α can easily gain the ability to block HIV-1. The next step was to find out whether these gains in antiviral activity are just as easily lost. To do this, Tenthorey et al. performed the same tests on TRIM5α from rhesus macaques and an HIV-blocking mutant version of human TRIM5α. This showed that the majority of random mutations do not break TRIM5α's virus-blocking ability. Thus, TRIM5α can readily gain antiviral activity and, once gained, does not lose it easily during subsequent mutation. Antiviral proteins like TRIM5α engage in uneven evolutionary battles with fast-evolving viruses. But, although they are resilient and able to evolve, they are not always able to find the right mutations on their own. Experiments like these suggest that it might be possible to give them a helping hand. Identifying mutations that help human TRIM5α to strongly block HIV-1 could pave the way for future gene therapy. This step would demand significant advances in gene therapy efficacy and safety, but it could offer a new way to block virus infection in the future.


Assuntos
Catarrinos/genética , Interações Hospedeiro-Patógeno , Mutação/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Antivirais , Fatores de Restrição Antivirais , Células Cultivadas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Retroviridae/imunologia , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Viroses/imunologia
5.
Elife ; 92020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479260

RESUMO

Host-virus arms races are inherently asymmetric; viruses evolve much more rapidly than host genomes. Thus, there is high interest in discovering mechanisms by which host genomes keep pace with rapidly evolving viruses. One family of restriction factors, the APOBEC3 (A3) cytidine deaminases, has undergone positive selection and expansion via segmental gene duplication and recombination. Here, we show that new copies of A3 genes have also been created in primates by reverse transcriptase-encoding elements like LINE-1 or endogenous retroviruses via a process termed retrocopying. First, we discovered that all simian primate genomes retain the remnants of an ancient A3 retrocopy: A3I. Furthermore, we found that some New World monkeys encode up to ten additional APOBEC3G (A3G) retrocopies. Some of these A3G retrocopies are transcribed in a variety of tissues and able to restrict retroviruses. Our findings suggest that host genomes co-opt retroelement activity in the germline to create new host restriction factors as another means to keep pace with the rapid evolution of viruses. (163).


Assuntos
Desaminases APOBEC , Antivirais/metabolismo , Duplicação Gênica/genética , Interações Hospedeiro-Patógeno , Retroelementos/genética , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Animais , Dosagem de Genes/genética , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mutação/genética , Primatas/genética , Retroviridae/genética , Retroviridae/patogenicidade
6.
PLoS Biol ; 17(10): e3000181, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31574080

RESUMO

Antagonistic interactions drive host-virus evolutionary arms races, which often manifest as recurrent amino acid changes (i.e., positive selection) at their protein-protein interaction interfaces. Here, we investigated whether combinatorial mutagenesis of positions under positive selection in a host antiviral protein could enhance its restrictive properties. We tested approximately 700 variants of human MxA, generated by combinatorial mutagenesis, for their ability to restrict Thogotovirus (THOV). We identified MxA super-restrictors with increased binding to the THOV nucleoprotein (NP) target protein and 10-fold higher anti-THOV restriction relative to wild-type human MxA, the most potent naturally occurring anti-THOV restrictor identified. Our findings reveal a means to elicit super-restrictor antiviral proteins by leveraging signatures of positive selection. Although some MxA super-restrictors of THOV were impaired in their restriction of H5N1 influenza A virus (IAV), other super-restrictor variants increased THOV restriction without impairment of IAV restriction. Thus, broadly acting antiviral proteins such as MxA mitigate breadth-versus-specificity trade-offs that could otherwise constrain their adaptive landscape.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Proteínas de Resistência a Myxovirus/genética , Nucleoproteínas/genética , Thogotovirus/genética , Proteínas Virais/genética , Motivos de Aminoácidos , Linhagem Celular Tumoral , Evolução Molecular , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Especificidade de Hospedeiro , Humanos , Virus da Influenza A Subtipo H5N1/metabolismo , Mutagênese , Proteínas de Resistência a Myxovirus/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Nucleoproteínas/metabolismo , Transdução de Sinais , Thogotovirus/metabolismo , Proteínas Virais/metabolismo
7.
Elife ; 62017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29251593

RESUMO

Many different human cell lines, including both normal and cancer cells, appear to converge to a state that contains an unusual number of chromosomes when they are grown in culture.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomos Sexuais , Linhagem Celular , Humanos
8.
PLoS Genet ; 10(5): e1004403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875882

RESUMO

Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Evolução Molecular , Imunidade Inata/genética , Vírus/patogenicidade , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Vírus/genética
9.
Proc Natl Acad Sci U S A ; 110(31): 12744-9, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23847207

RESUMO

Many viruses use overprinting (alternate reading frame utilization) as a means to increase protein diversity in genomes severely constrained by size. However, the evolutionary steps that facilitate the de novo generation of a novel protein within an ancestral ORF have remained poorly characterized. Here, we describe the identification of an overprinting gene, expressed from an Alternate frame of the Large T Open reading frame (ALTO) in the early region of Merkel cell polyomavirus (MCPyV), the causative agent of most Merkel cell carcinomas. ALTO is expressed during, but not required for, replication of the MCPyV genome. Phylogenetic analysis reveals that ALTO is evolutionarily related to the middle T antigen of murine polyomavirus despite almost no sequence similarity. ALTO/MT arose de novo by overprinting of the second exon of T antigen in the common ancestor of a large clade of mammalian polyomaviruses. Taking advantage of the low evolutionary divergence and diverse sampling of polyomaviruses, we propose evolutionary transitions that likely gave birth to this protein. We suggest that two highly constrained regions of the large T antigen ORF provided a start codon and C-terminal hydrophobic motif necessary for cellular localization of ALTO. These two key features, together with stochastic erasure of intervening stop codons, resulted in a unique protein-coding capacity that has been preserved ever since its birth. Our study not only reveals a previously undefined protein encoded by several polyomaviruses including MCPyV, but also provides insight into de novo protein evolution.


Assuntos
Antígenos Virais de Tumores/genética , Códon de Iniciação/genética , Evolução Molecular , Éxons/fisiologia , Poliomavírus das Células de Merkel/genética , Fases de Leitura Aberta/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Antígenos Virais de Tumores/metabolismo , Códon de Iniciação/metabolismo , Poliomavírus das Células de Merkel/metabolismo , Dados de Sequência Molecular
10.
Annu Rev Genet ; 46: 677-700, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145935

RESUMO

Mammalian genes and genomes have been shaped by ancient and ongoing challenges from viruses. These genetic imprints can be identified via evolutionary analyses to reveal fundamental details about when (how old), where (which protein domains), and how (what are the functional consequences of adaptive changes) host-virus arms races alter the proteins involved. Just as extreme amino acid conservation can serve to identify key immutable residues in enzymes, positively selected residues point to molecular recognition interfaces between host and viral proteins that have adapted and counter-adapted in a long series of classical Red Queen conflicts. Common rules for the strategies employed by both hosts and viruses have emerged from case studies of innate immunity genes in primates. We are now poised to use these rules to transition from a retrospective view of host-virus arms races to specific predictions about which host genes face pathogen antagonism and how those genetic conflicts transform host and virus evolution.


Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno , Desaminases APOBEC , Imunidade Adaptativa , Animais , Fatores de Restrição Antivirais , Proteínas de Transporte/genética , Citidina Desaminase , Citosina Desaminase/genética , Epistasia Genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteólise , Retroviridae/genética , Retroviridae/imunologia , Retroviridae/patogenicidade , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Proteína 1 com Domínio SAM e Domínio HD , Seleção Genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Curr Opin Virol ; 1(4): 304-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22003379

RESUMO

The emerging field of paleovirology aims to study the evolutionary age and impact of ancient viruses (paleoviruses) on host biology. Despite a historical emphasis on retroviruses, paleoviral 'fossils' have recently been uncovered from a broad swathe of viruses. These viral imprints have upended long-held notions of the age and mutation rate of viruses. While 'direct' paleovirology relies on the insertion of viral genes in animal genomes, examination of adaptive changes in host genes that occurred in response to paleoviral infections provides a complementary strategy for making 'indirect' paleovirological inferences. Finally, viruses have also impacted host biology by providing genes hosts have domesticated for their own purpose.


Assuntos
Fósseis , Viroses/virologia , Vírus/isolamento & purificação , Animais , Evolução Biológica , Interações Hospedeiro-Patógeno , Humanos , Paleontologia , Retroviridae/classificação , Retroviridae/genética , Retroviridae/isolamento & purificação , Vírus/classificação , Vírus/genética
12.
J Virol ; 85(21): 11361-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21835794

RESUMO

The Apobec3 family of cytidine deaminases can inhibit the replication of retroviruses and retrotransposons. Human and chimpanzee genomes encode seven Apobec3 paralogs; of these, Apobec3DE has the greatest sequence divergence between humans and chimpanzees. Here we show that even though human and chimpanzee Apobec3DEs are very divergent, the two orthologs similarly restrict long terminal repeat (LTR) and non-LTR retrotransposons (MusD and Alu, respectively). However, chimpanzee Apobec3DE also potently restricts two lentiviruses, human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagmTAN), unlike human Apobec3DE, which has poor antiviral activity against these same viruses. This difference between human and chimpanzee Apobec3DE in the ability to restrict retroviruses is not due to different levels of Apobec3DE protein incorporation into virions but rather to the ability of Apobec3DE to deaminate the viral genome in target cells. We further show that Apobec3DE rapidly evolved in chimpanzee ancestors approximately 2 to 6 million years ago and that this evolution drove the increased breadth of chimpanzee Apobec3DE antiviral activity to its current high activity against some lentiviruses. Despite a difference in target specificities between human and chimpanzee Apobec3DE, Apobec3DE is likely to currently play a role in host defense against retroelements in both species.


Assuntos
Citosina Desaminase/imunologia , Citosina Desaminase/metabolismo , Retroelementos/imunologia , Retroviridae/imunologia , Animais , Linhagem Celular , Análise por Conglomerados , Humanos , Dados de Sequência Molecular , Pan troglodytes , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência , Replicação Viral
13.
Virology ; 385(2): 473-83, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19147168

RESUMO

Trim5alpha from primates (including humans), cows, and rabbits has been shown to be an active antiviral host gene that acts against a range of retroviruses. Although this suggests that Trim5alpha may be a common antiviral restriction factor among mammals, the status of Trim5 genes in rodents has been unclear. Using genomic and phylogenetic analyses, we describe an expanded paralogous cluster of at least eight Trim5-like genes in mice (including the previously described Trim12 and Trim30 genes), and three Trim5-like genes in rats. Our characterization of the rodent Trim5 locus, and comparison to the Trim5 locus in humans, cows, and rabbits, indicates that Trim5 has undergone independent evolutionary expansions within species. Evolutionary analysis shows that rodent Trim5 genes have evolved under positive selection, suggesting evolutionary conflicts consistent with important antiviral function. Sampling six rodent Trim5 genes failed to reveal antiviral activities against a set of eight retroviral challenges, although we predict that such activities exist.


Assuntos
Proteínas de Transporte/genética , Filogenia , Roedores/classificação , Roedores/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Gatos , Linhagem Celular , Clonagem Molecular , Bases de Dados Genéticas , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos , Retroviridae/fisiologia , Infecções por Retroviridae/genética , Roedores/metabolismo , Seleção Genética , Alinhamento de Sequência , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
14.
Cell Host Microbe ; 4(3): 249-59, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18779051

RESUMO

The primate APOBEC3 gene locus encodes a family of proteins (APOBEC3A-H) with various antiviral and antiretroelement activities. Here, we trace the evolution of APOBEC3H activity in hominoids to identify a human-specific loss of APOBEC3H antiviral activity. Reconstruction of the predicted ancestral human APOBEC3H protein shows that human ancestors encoded a stable form of this protein with potent antiviral activity. Subsequently, the antiviral activity of APOBEC3H was lost via two polymorphisms that are each independently sufficient to destabilize the protein. Nonetheless, an APOBEC3H allele that encodes a stably expressed protein is still maintained at high frequency, primarily in African populations. This stable APOBEC3H protein has potent activity against retroviruses and retrotransposons, including HIV and LINE-1 elements. The surprising finding that APOBEC3H antiviral activity has been lost in the majority of humans may have important consequences for our susceptibility to retroviral infections as well as ongoing retroelement proliferation in the human genome.


Assuntos
Antirretrovirais/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Evolução Molecular , Sequência de Aminoácidos , Aminoidrolases , Animais , População Negra/genética , Linhagem Celular , Citosina Desaminase/química , Frequência do Gene , HIV/fisiologia , Hominidae/genética , Hominidae/metabolismo , Humanos , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Replicação Viral
15.
PLoS Genet ; 4(1): e21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18225958

RESUMO

Intrinsic immunity relies on specific recognition of viral epitopes to mount a cell-autonomous defense against viral infections. Viral recognition determinants in intrinsic immunity genes are expected to evolve rapidly as host genes adapt to changing viruses, resulting in a signature of adaptive evolution. Zinc-finger antiviral protein (ZAP) from rats was discovered to be an intrinsic immunity gene that can restrict murine leukemia virus, and certain alphaviruses and filoviruses. Here, we used an approach combining molecular evolution and cellular infectivity assays to address whether ZAP also acts as a restriction factor in primates, and to pinpoint which protein domains may directly interact with the virus. We find that ZAP has evolved under positive selection throughout primate evolution. Recurrent positive selection is only found in the poly(ADP-ribose) polymerase (PARP)-like domain present in a longer human ZAP isoform. This PARP-like domain was not present in the previously identified and tested rat ZAP gene. Using infectivity assays, we found that the longer isoform of ZAP that contains the PARP-like domain is a stronger suppressor of murine leukemia virus expression and Semliki forest virus infection. Our study thus finds that human ZAP encodes a potent antiviral activity against alphaviruses. The striking congruence between our evolutionary predictions and cellular infectivity assays strongly validates such a combined approach to study intrinsic immunity genes.


Assuntos
Antivirais/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Seleção Genética , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Primatas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Vírus da Floresta de Semliki , Especificidade da Espécie
16.
PLoS Pathog ; 3(12): e197, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18159944

RESUMO

TRIM5alpha provides a cytoplasmic block to retroviral infection, and orthologs encoded by some primates are active against HIV. Here, we present an evolutionary comparison of the TRIM5 gene to its closest human paralogs: TRIM22, TRIM34, and TRIM6. We show that TRIM5 and TRIM22 have a dynamic history of gene expansion and loss during the evolution of mammals. The cow genome contains an expanded cluster of TRIM5 genes and no TRIM22 gene, while the dog genome encodes TRIM22 but has lost TRIM5. In contrast, TRIM6 and TRIM34 have been strictly preserved as single gene orthologs in human, dog, and cow. A more focused analysis of primates reveals that, while TRIM6 and TRIM34 have evolved under purifying selection, TRIM22 has evolved under positive selection as was previously observed for TRIM5. Based on TRIM22 sequences obtained from 27 primate genomes, we find that the positive selection of TRIM22 has occurred episodically for approximately 23 million years, perhaps reflecting the changing pathogenic landscape. However, we find that the evolutionary episodes of positive selection that have acted on TRIM5 and TRIM22 are mutually exclusive, with generally only one of these genes being positively selected in any given primate lineage. We interpret this to mean that the positive selection of one gene has constrained the adaptive flexibility of its neighbor, probably due to genetic linkage. Finally, we find a striking congruence in the positions of amino acid residues found to be under positive selection in both TRIM5alpha and TRIM22, which in both proteins fall predominantly in the beta2-beta3 surface loop of the B30.2 domain. Astonishingly, this same loop is under positive selection in the multiple cow TRIM5 genes as well, indicating that this small structural loop may be a viral recognition motif spanning a hundred million years of mammalian evolution.


Assuntos
Proteínas de Transporte/genética , Evolução Molecular , Genômica , Proteínas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Fatores de Restrição Antivirais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Bovinos , Cães , Expressão Gênica , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Proteínas/química , Proteínas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Retroviridae/genética , Retroviridae/patogenicidade , Infecções por Retroviridae/virologia , Transcrição Reversa , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
17.
Science ; 316(5832): 1756-8, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17588933

RESUMO

Primate genomes contain a large number of endogenous retroviruses and encode evolutionarily dynamic proteins that provide intrinsic immunity to retroviral infections. We report here the resurrection of the core protein of a 4-million-year-old endogenous virus from the chimpanzee genome and show that the human variant of the intrinsic immune protein TRIM5alpha can actively prevent infection by this virus. However, we suggest that selective changes that have occurred in the human lineage during the acquisition of resistance to this virus, and perhaps similar viruses, may have left our species more susceptible to infection by human immunodeficiency virus type 1 (HIV-1).


Assuntos
Proteínas de Transporte/fisiologia , Retrovirus Endógenos/fisiologia , Animais , Fatores de Restrição Antivirais , Sequência de Bases , Evolução Biológica , Proteínas de Transporte/genética , Gatos , Linhagem Celular , DNA , Suscetibilidade a Doenças , Retrovirus Endógenos/genética , Evolução Molecular , Gorilla gorilla , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1 , Humanos , Imunidade Inata/genética , Macaca mulatta , Dados de Sequência Molecular , Pan troglodytes/genética , Pan troglodytes/virologia , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
18.
J Virol ; 80(8): 3853-62, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16571802

RESUMO

The APOBEC3 genes encode cytidine deaminases that act as components of an intrinsic immune defense that have potent activity against a variety of retroelements. This family of genes has undergone a rapid expansion from one or two genes in nonprimate mammals to at least seven members in primates. Here we describe the evolution and function of an uncharacterized antiviral effector, APOBEC3H, which represents the most evolutionarily divergent APOBEC3 gene found in primates. We found that APOBEC3H has undergone significant adaptive evolution in primates. Consistent with our previous findings implicating adaptively evolving APOBEC3 genes as antiviral effectors, APOBEC3H from Old World monkeys (OWMs) has efficient antiviral activity against primate lentiviruses, is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. In contrast, human APOBEC3H is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. Both OWM and human APOBEC3H proteins can be expressed in bacteria, where they display significant DNA mutator activity. Thus, humans have retained an APOBEC3H gene that encodes a functional, but poorly expressed, cytidine deaminase with no apparent antiviral activity. The consequences of the lack of antiviral activity of human APOBEC3H are likely to be relevant to the current-day abilities of humans to combat retroviral challenges.


Assuntos
Evolução Biológica , Citosina Desaminase/genética , Citosina Desaminase/fisiologia , Primatas/genética , Infecções por Retroviridae/prevenção & controle , Desaminases APOBEC , Animais , Citidina Desaminase , Humanos , Macaca , Mutação , Especificidade de Órgãos , RNA Mensageiro/análise , Retroviridae/genética
19.
Curr Biol ; 16(1): 95-100, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16401428

RESUMO

The intracellular TRIM5alpha protein successfully inhibits HIV-1 infection in rhesus monkeys, but not in humans . A few amino acids in the virus-interacting SPRY domain were found to be responsible for most of this anti-viral specificity , raising the possibility that genetic variation among humans could result in TRIM5alpha proteins with a spectrum of potencies. We found several nonsynonymous SNPs at the human TRIM5 locus, but only one of these (H43Y) was found to have a significant functional consequence. We demonstrate that H43Y impairs TRIM5alpha restriction of two distantly related retroviruses. H43Y lies in the RING domain of TRIM5alpha and may negatively affect its putative E3 ubiquitin ligase activity. This detrimental allele dates back to before the African diaspora and is found at a frequency of 43% in indigenous Central and South Americans. We suggest that relaxed constraint due to a recent period of low retroviral challenge has allowed the deleterious H43Y mutation to persist and even to expand after the bottleneck that occurred upon human migration to the New World. The unexpectedly high frequency of an impaired retroviral restriction allele among humans is likely to have a significant impact on our ability to ward off future retroviral challenges.


Assuntos
Proteínas de Transporte/genética , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Retroviridae/fisiologia , Fatores de Restrição Antivirais , Linfócitos B/virologia , Proteínas de Transporte/fisiologia , Genótipo , Humanos , Estrutura Terciária de Proteína , Especificidade da Espécie , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
20.
PLoS Genet ; 1(4): e44, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16244705

RESUMO

Eukaryotic genomes can usurp enzymatic functions encoded by mobile elements for their own use. A particularly interesting kind of acquisition involves the domestication of retroviral envelope genes, which confer infectious membrane-fusion ability to retroviruses. So far, these examples have been limited to vertebrate genomes, including primates where the domesticated envelope is under purifying selection to assist placental function. Here, we show that in Drosophila genomes, a previously unannotated gene (CG4715, renamed Iris) was domesticated from a novel, active Kanga lineage of insect retroviruses at least 25 million years ago, and has since been maintained as a host gene that is expressed in all adult tissues. Iris and the envelope genes from Kanga retroviruses are homologous to those found in insect baculoviruses and gypsy and roo insect retroviruses. Two separate envelope domestications from the Kanga and roo retroviruses have taken place, in fruit fly and mosquito genomes, respectively. Whereas retroviral envelopes are proteolytically cleaved into the ligand-interaction and membrane-fusion domains, Iris appears to lack this cleavage site. In the takahashii/suzukii species groups of Drosophila, we find that Iris has tandemly duplicated to give rise to two genes (Iris-A and Iris-B). Iris-B has significantly diverged from the Iris-A lineage, primarily because of the "invention" of an intron de novo in what was previously exonic sequence. Unlike domesticated retroviral envelope genes in mammals, we find that Iris has been subject to strong positive selection between Drosophila species. The rapid, adaptive evolution of Iris is sufficient to unambiguously distinguish the phylogenies of three closely related sibling species of Drosophila (D. simulans, D. sechellia, and D. mauritiana), a discriminative power previously described only for a putative "speciation gene." Iris represents the first instance of a retroviral envelope-derived host gene outside vertebrates. It is also the first example of a retroviral envelope gene that has been found to be subject to positive selection following its domestication. The unusual selective pressures acting on Iris suggest that it is an active participant in an ongoing genetic conflict. We propose a model in which Iris has "switched sides," having been recruited by host genomes to combat baculoviruses and retroviruses, which employ homologous envelope genes to mediate infection.


Assuntos
Drosophila melanogaster/genética , Evolução Molecular , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genoma , Ligantes , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Filogenia , Retroelementos , Retroviridae/genética , Seleção Genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA