Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(6): 3972-3984, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38288152

RESUMO

Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties. Herein, we review the background and development of different imidazopyridazines as potential pharmacological agents. Moreover, the scope of this relatively less charted heterocyclic scaffold is also highlighted.

2.
Cancers (Basel) ; 15(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190316

RESUMO

Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.

3.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986433

RESUMO

Indole-tethered chromene derivatives were synthesised in a one-pot multicomponent reaction using N-alkyl-1H-indole-3-carbaldehydes, 5,5-dimethylcyclohexane-1,3-dione, and malononitrile, catalysed by DBU at 60-65 °C in a short reaction time. The benefits of the methodology include non-toxicity, an uncomplicated set-up procedure, a faster reaction time, and high yields. Moreover, the anticancer properties of the synthesised compounds were tested against selected cancer cell lines. The derivatives 4c and 4d displayed very good cytotoxic activity, with IC50 values ranging from 7.9 to 9.1 µM. Molecular docking revealed the potent derivatives have good binding affinity towards tubulin protein, better than the control, and the molecular dynamic simulations further demonstrated the stability of ligand-receptor interactions. Moreover, the derivatives followed all the drug-likeness filters.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889617

RESUMO

Due to their appropriate physicochemical properties, nanoparticles are used in nanomedicine to develop drug delivery systems for anticancer therapy. In biomedical applications, metal oxide nanoparticles are used as powerful and flexible multipurpose agents. This work described a green synthesis of Y2O3 nanoparticles (NPs) using the sol-gel technique with the use of aqueous leaf extracts of Lantana camara L (LC). These nanoparticles were characterized with the aid of different methods, including UV, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmitted electron microscopy (TEM), and photocatalytic degradation. Y2O3 nanoparticles showed excellent antibacterial activity against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 10 to 15 mm inhibitory zone. Green Y2O3 NPs were released with a 4 h lag time and 80% sustained release rate, indicating that they could be used in drug delivery. In addition, the bioavailability of green Y2O3 NPs was investigated using cell viability in cervical cancer cell lines. These green-synthesized Y2O3 NPs demonstrated photocatalytic degradation, antibacterial, and anticancer properties.

5.
Front Chem ; 9: 666573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109154

RESUMO

A series of novel pyran-linked phthalazinone-pyrazole hybrids were designed and synthesized by a facile one-pot three-component reaction employing substituted phthalazinone, 1H-pyrazole-5-carbaldehyde, and active methylene compounds. Optimization studies led to the identification of L-proline and ethanol as efficient catalyst and solvent, respectively. This was followed by evaluation of anticancer activity against solid tumor cell lines of lung and cervical carcinoma that displayed IC50 values in the range of 9.8-41.6 µM. Molecular modeling studies were performed, and crucial interactions with the target protein were identified. The drug likeliness nature of the compounds and molecular descriptors such as molecular flexibility, complexity, and shape index were also calculated to understand the potential of the synthesized molecules to act as lead-like molecule upon further detailed biological investigations as well as 3D-QSAR studies.

6.
Front Chem ; 9: 630357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777897

RESUMO

A molecular modeling assisted rational design and synthesis of naphthalene diimide linked bis-naphthalimides as potential DNA interactive agents is described. Chemical templates incorporating naphthalene diimide as a linker in bis-naphthalimide motif were subjected to molecular docking analysis at specific intercalation and telomeric DNA G-quadruplex sites. Excellent results were obtained, which were better than the standards. A short and convenient synthetic route was employed to access these hybrids experimentally, followed by evaluation of their ability to cause thermal denaturation of DNA and cytotoxic properties along with ADME predictions. The obtained results provided useful insights and two potential molecules were identified for further development.

7.
RSC Adv ; 11(57): 35806-35827, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492773

RESUMO

Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.

8.
Front Chem ; 9: 808556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155379

RESUMO

An efficient atom-economical synthetic protocol to access new imidazole-based N-phenylbenzamide derivatives is described. A one-pot three-component reaction was utilized to provide a series of N-phenylbenzamide derivatives in a short reaction time (2-4 h) with an 80-85% yield. The cytotoxic evaluation revealed that derivatives 4e and 4f exhibited good activity, with IC50 values between 7.5 and 11.1 µM against the tested cancer cell lines. Computational studies revealed interesting insights: the docking of the active derivatives (4e and 4f) showed a higher affinity toward the target receptor protein than the control. Molecular dynamic simulations revealed that the active derivatives form stable complexes with the ABL1 kinase protein. Moreover, the ADME and drug-likeness of the derivatives reinforced the potential of the derivatives to be taken up for further development as anticancer agents.

9.
Anticancer Agents Med Chem ; 20(5): 599-611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884931

RESUMO

BACKGROUND: Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. OBJECTIVE: Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. METHODS: A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. RESULTS: Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0µM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. CONCLUSION: Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzotiadiazinas/farmacologia , Mitose/efeitos dos fármacos , Quinazolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Benzotiadiazinas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinazolinas/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
10.
Bioorg Med Chem Lett ; 27(11): 2549-2558, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400235

RESUMO

Based on our previous results and literature precedence, a series of 2-anilinopyridinyl-benzothiazole Schiff bases were rationally designed by performing molecular modeling experiments on some selected molecules. The binding energies of the docked molecules were better than the E7010, and the Schiff base with trimethoxy group on benzothiazole moiety, 4y was the best. This was followed by the synthesis of a series of the designed molecules by a convenient synthetic route and evaluation of their anticancer potential. Most of the compounds have shown significant growth inhibition against the tested cell lines and the compound 4y exhibited good antiproliferative activity with a GI50 value of 3.8µM specifically against the cell line DU145. In agreement with the docking results, 4y exerted cytotoxicity by the disruption of the microtubule dynamics by inhibiting tubulin polymerization via effective binding into colchicine domain, comparable to E7010. Detailed binding modes of 4y with colchicine binding site of tubulin were studied by molecular docking. Furthermore, 4y induced apoptosis as evidenced by biological studies like mitochondrial membrane potential, caspase-3, and Annexin V-FITC assays.


Assuntos
Antimitóticos/síntese química , Benzotiazóis/química , Desenho de Fármacos , Bases de Schiff/síntese química , Moduladores de Tubulina/síntese química , Antimitóticos/química , Antimitóticos/toxicidade , Benzotiazóis/síntese química , Benzotiazóis/toxicidade , Sítios de Ligação , Ligação Competitiva , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Bases de Schiff/química , Bases de Schiff/toxicidade , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/toxicidade
11.
Medchemcomm ; 8(8): 1592-1603, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108870

RESUMO

The dynamic and crucial role of tubulin in different cellular functions rendered it a promising target in anticancer drug development. Combretastatin A-4 (CA-4), an inhibitor of tubulin polymerization isolated from natural sources, is a lead molecule with significant cytotoxicity against tumour cells. Owing to its non polar nature it exhibits low solubility in natural biological fluids, thereby prompting the development of new CA-4 based derivatives. The modification of this lead molecule was mostly carried out by keeping the crucial cis-orientation of the double bond intact, along with a trimethoxyphenyl aromatic ring, by employing different approaches. The issue of solubility was also addressed by the development of water soluble prodrugs of CA-4. The present review highlights the investigations into the parallel development of both new CA-4 based derivatives and prodrugs in the past few years.

12.
Bioorg Med Chem Lett ; 26(18): 4527-4535, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27515320

RESUMO

A series of colchicine site binding tubulin inhibitors were designed and synthesized by the modification of the combretastatin A-4 (CA4) pharmacophore. The ring B was replaced by the pharmacologically relevant benzimidazole or benzothiazole scaffolds, and the cis-configuration of the olefinic bond was restricted by the incorporation of a pyridine ring which is envisaged by the structural resemblance to a tubulin inhibitor like E7010. These compounds were evaluated for their antiproliferative activity on selected cancer cell lines and an insight in the structure activity relationship was developed. The most potent compounds (6c and 6l) demonstrated an antiproliferative effect comparable and superior to that of CA4 (GI50 up to 40nM). Mitotic cell cycle arrest in G2/M phase revealed the disruption of microtubule dynamics that was confirmed by tubulin polymerization assays and immunocytochemistry studies at the cellular level. The molecular docking studies suggested that the binding of these mimics at the colchicine site of the tubulin is similar to that of combretastatin A-4.


Assuntos
Apoptose/efeitos dos fármacos , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/farmacologia , Mitose/efeitos dos fármacos , Mimetismo Molecular , Estilbenos/química , Benzimidazóis/síntese química , Benzotiazóis/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Imuno-Histoquímica , Simulação de Acoplamento Molecular , Polimerização , Relação Estrutura-Atividade
13.
Anticancer Agents Med Chem ; 15(5): 565-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25469512

RESUMO

Podophyllotoxin, a lignan extracted from rhizomes of Podophyllum species, is a well established lead in the development of new chemical agents for the treatment of cancer. Its semi-synthetic variant, etoposide is an anticancer drug which inhibits DNA topoisomerase II causing cell cycle arrest in the S the phase. Its clinical success and intriguing mode of action made it a much sought after skeleton for the development of better antitumor agents. Modifications were made at several positions of its skeleton with the aim to either improve its potency or to overcome drug resistance. In recent years, the structurally modified podophyllotoxins have been investigated for their apoptosis inducing ability. Although numerous reviews emphasized the occurrence, synthesis and applications of podophyllotoxins, the recent progress towards development of structurally modified podophyllotoxins possessing apoptosis inducing ability has not been previously reviewed. Therefore the present review focuses on the studies carried out in the design and synthesis of new podophyllotoxin derivatives and their evaluation as apoptosis inducers.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Animais , Antineoplásicos Fitogênicos/síntese química , Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Neoplasias/patologia , Podofilotoxina/síntese química , Podofilotoxina/química
14.
Bioorg Med Chem ; 22(24): 6755-67, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25468039

RESUMO

A series of 2-anilinopyridine dimers have been synthesized and evaluated for their anticancer potential. Most of the compounds have showed significant growth inhibition of the cell lines tested and compound 4d was most effective amongst the series displaying a GI50 of 0.99 µM specifically against the prostate cancer cell line (DU145). Studies to understand the mechanism of action of 4d indicates that it disrupts microtubule dynamics by inhibiting tubulin polymerization thereby arresting the cell cycle in G2/M phase. Competitive colchicine binding assay suggests that 4d binds into colchicine binding site of the tubulin. Further from some detailed biological studies like mitochondrial membrane potential, caspase-3 assay, DNA fragmentation analysis and Annexin V-FITC assay it is evident that 4d induces apoptosis.Molecular modeling studies provide an insight into the binding modes of 4d with colchicine binding site of tubulin and the data obtained correlates with the antiproliferative activity.


Assuntos
Microtúbulos/metabolismo , Niacinamida/análogos & derivados , Piridinas/química , Moduladores de Tubulina/síntese química , Compostos de Anilina/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Dimerização , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/química , Simulação de Dinâmica Molecular , Niacinamida/síntese química , Niacinamida/química , Niacinamida/toxicidade , Estrutura Terciária de Proteína , Piridinas/síntese química , Piridinas/toxicidade , Moduladores de Tubulina/química , Moduladores de Tubulina/toxicidade
15.
Mini Rev Med Chem ; 10(5): 405-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20370699

RESUMO

One of the hallmarks of cancer is the uncontrolled cell proliferation which causes more deaths among the human diseases throughout the globe. One in eight deaths worldwide are due to cancer, it is the second and third leading cause of death in economically developed and developing countries, respectively. As it is caused by both external and internal factors, a balanced approach to cancer control includes prevention, early detection, and effective treatment. In the treatment of cancer, chemotherapy is one of the practical methods and is widely used employing drugs that can destroy cancer cells by impeding their growth and reproduction. Despite the great strides made in the treatment of cancer over the past 50 years, it continues to be a major health concern and therefore, extensive efforts have been devoted to search for new scaffolds to develop chemotherapeutics. In this perspective, over the past two decades from this laboratory extensive efforts have been made in the development of new chemotherapeutic agents for the treatment of cancer. In this review, glimpses on types of current chemotherapeutic agents based on their action of inhibition and the new molecules that are being developed based on the scaffolds such as pyrrolo[2,1-c][1,4]benzodiazepines, podophyllotoxins, benzothiadiazine 1,1-dioxides, naphthalimides and monastrol across the world as well as in this laboratory have been articulated.


Assuntos
Antineoplásicos/química , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Benzodiazepinas/síntese química , Benzodiazepinas/química , Benzodiazepinas/uso terapêutico , Benzotiadiazinas/síntese química , Benzotiadiazinas/química , Benzotiadiazinas/uso terapêutico , Humanos , Naftalimidas/síntese química , Naftalimidas/química , Naftalimidas/uso terapêutico , Podofilotoxina/síntese química , Podofilotoxina/química , Podofilotoxina/uso terapêutico , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/uso terapêutico , Tionas/síntese química , Tionas/química , Tionas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA