Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 1739, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409108

RESUMO

Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.


Assuntos
Transtornos de Estresse por Calor , Lipopolissacarídeos , Humanos , Gasderminas , Morte Celular , Inflamação/genética , Caspases/genética , Resposta ao Choque Térmico/genética , Piroptose , Apoptose , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
2.
iScience ; 26(6): 106938, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37324531

RESUMO

Transforming growth factor-ß-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.

3.
Front Immunol ; 13: 1068230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505497

RESUMO

Interleukin 1α (IL-1α) and IL-1ß are the founding members of the IL-1 cytokine family, and these innate immune inflammatory mediators are critically important in health and disease. Early studies on these molecules suggested that their expression was interdependent, with an initial genetic model of IL-1α depletion, the IL-1α KO mouse (Il1a-KOline1), showing reduced IL-1ß expression. However, studies using this line in models of infection and inflammation resulted in contrasting observations. To overcome the limitations of this genetic model, we have generated and characterized a new line of IL-1α KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In contrast to cells from Il1a-KOline1, where IL-1ß expression was drastically reduced, bone marrow-derived macrophages (BMDMs) from Il1a-KOline2 mice showed normal induction and activation of IL-1ß. Additionally, Il1a-KOline2 BMDMs showed normal inflammasome activation and IL-1ß expression in response to multiple innate immune triggers, including both pathogen-associated molecular patterns and pathogens. Moreover, using Il1a-KOline2 cells, we confirmed that IL-1α, independent of IL-1ß, is critical for the expression of the neutrophil chemoattractant KC/CXCL1. Overall, we report the generation of a new line of IL-1α KO mice and confirm functions for IL-1α independent of IL-1ß. Future studies on the unique functions of IL-1α and IL-1ß using these mice will be critical to identify new roles for these molecules in health and disease and develop therapeutic strategies.


Assuntos
Inflamassomos , Interleucina-1alfa , Animais , Camundongos , Inflamassomos/genética , Interleucina-1alfa/genética , Interleucina-8 , Macrófagos , Camundongos Knockout
4.
NAR Cancer ; 4(4): zcac033, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36329783

RESUMO

Resistance to programmed cell death (PCD) is a hallmark of cancer. While some PCD components are prognostic in cancer, the roles of many molecules can be masked by redundancies and crosstalks between PCD pathways, impeding the development of targeted therapeutics. Recent studies characterizing these redundancies have identified PANoptosis, a unique innate immune-mediated inflammatory PCD pathway that integrates components from other PCD pathways. Here, we designed a systematic computational framework to determine the pancancer clinical significance of PANoptosis and identify targetable biomarkers. We found that high expression of PANoptosis genes was detrimental in low grade glioma (LGG) and kidney renal cell carcinoma (KIRC). ZBP1, ADAR, CASP2, CASP3, CASP4, CASP8 and GSDMD expression consistently had negative effects on prognosis in LGG across multiple survival models, while AIM2, CASP3, CASP4 and TNFRSF10 expression had negative effects for KIRC. Conversely, high expression of PANoptosis genes was beneficial in skin cutaneous melanoma (SKCM), with ZBP1, NLRP1, CASP8 and GSDMD expression consistently having positive prognostic effects. As a therapeutic proof-of-concept, we treated melanoma cells with combination therapy that activates ZBP1 and showed that this treatment induced PANoptosis. Overall, through our systematic framework, we identified and validated key innate immune biomarkers from PANoptosis which can be targeted to improve patient outcomes in cancers.

5.
Cell Rep ; 37(3): 109858, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686350

RESUMO

Cell death provides host defense and maintains homeostasis. Zα-containing molecules are essential for these processes. Z-DNA binding protein 1 (ZBP1) activates inflammatory cell death, PANoptosis, whereas adenosine deaminase acting on RNA 1 (ADAR1) serves as an RNA editor to maintain homeostasis. Here, we identify and characterize ADAR1's interaction with ZBP1, defining its role in cell death regulation and tumorigenesis. Combining interferons (IFNs) and nuclear export inhibitors (NEIs) activates ZBP1-dependent PANoptosis. ADAR1 suppresses this PANoptosis by interacting with the Zα2 domain of ZBP1 to limit ZBP1 and RIPK3 interactions. Adar1fl/flLysMcre mice are resistant to development of colorectal cancer and melanoma, but deletion of the ZBP1 Zα2 domain restores tumorigenesis in these mice. In addition, treating wild-type mice with IFN-γ and the NEI KPT-330 regresses melanoma in a ZBP1-dependent manner. Our findings suggest that ADAR1 suppresses ZBP1-mediated PANoptosis, promoting tumorigenesis. Defining the functions of ADAR1 and ZBP1 in cell death is fundamental to informing therapeutic strategies for cancer and other diseases.


Assuntos
Adenosina Desaminase/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/enzimologia , Melanoma Experimental/enzimologia , Proteínas de Ligação a RNA/metabolismo , Neoplasias Cutâneas/enzimologia , Adenosina Desaminase/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Morte Celular , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Hidrazinas/farmacologia , Interferon gama/farmacologia , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose , Piroptose , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Triazóis/farmacologia
6.
Immunohorizons ; 5(7): 568-580, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290111

RESUMO

Resistance to cell death is a hallmark of cancer. Immunotherapy, particularly immune checkpoint blockade therapy, drives immune-mediated cell death and has greatly improved treatment outcomes for some patients with cancer, but it often fails clinically. Its success relies on the cytokines and cytotoxic functions of effector immune cells to bypass the resistance to cell death and eliminate cancer cells. However, the specific cytokines capable of inducing cell death in tumors and the mechanisms that connect cytokines to cell death across cancer cell types remain unknown. In this study, we analyzed expression of several cytokines that are modulated in tumors and found correlations between cytokine expression and mortality. Of several cytokines tested for their ability to kill cancer cells, only TNF-α and IFN-γ together were able to induce cell death in 13 distinct human cancer cell lines derived from colon and lung cancer, melanoma, and leukemia. Further evaluation of the specific programmed cell death pathways activated by TNF-α and IFN-γ in these cancer lines identified PANoptosis, a form of inflammatory cell death that was previously shown to be activated by contemporaneous engagement of components from pyroptosis, apoptosis, and/or necroptosis. Specifically, TNF-α and IFN-γ triggered activation of gasdermin D, gasdermin E, caspase-8, caspase-3, caspase-7, and MLKL. Furthermore, the intratumoral administration of TNF-α and IFN-γ suppressed the growth of transplanted xenograft tumors in an NSG mouse model. Overall, this study shows that PANoptosis, induced by synergism of TNF-α and IFN-γ, is an important mechanism to kill cancer cells and suppress tumor growth that could be therapeutically targeted.


Assuntos
Morte Celular Imunogênica/imunologia , Interferon gama/metabolismo , Neoplasias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/patologia , Transdução de Sinais/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
mBio ; 12(3): e0105921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154417

RESUMO

Burkholderia infections can result in serious diseases with high mortality, such as melioidosis, and they are difficult to treat with antibiotics. Innate immunity is critical for cell-autonomous clearance of intracellular pathogens like Burkholderia by regulating programmed cell death. Inflammasome-dependent inflammatory cytokine release and cell death contribute to host protection against Burkholderia pseudomallei and Burkholderia thailandensis; however, the contribution of apoptosis and necroptosis to protection is not known. Here, we found that bone marrow-derived macrophages (BMDMs) lacking key components of pyroptosis died via apoptosis during infection. BMDMs lacking molecules required for pyroptosis, apoptosis, and necroptosis (PANoptosis), however, were significantly resistant to B. thailandensis-induced cell death until later stages of infection. Consequently, PANoptosis-deficient BMDMs failed to limit B. thailandensis-induced cell-cell fusion, which permits increased intercellular spread and replication compared to wild-type or pyroptosis-deficient BMDMs. Respiratory B. thailandensis infection resulted in higher mortality in PANoptosis-deficient mice than in pyroptosis-deficient mice, indicating that, in the absence of pyroptosis, apoptosis is essential for efficient control of infection in vivo. Together, these findings suggest both pyroptosis and apoptosis are necessary for host-mediated control of Burkholderia infection. IMPORTANCEBurkholderia infections result in a high degree of mortality when left untreated; therefore, understanding the host immune response required to control infection is critical. In this study, we found a hierarchical cell death program utilized by infected cells to disrupt the intracellular niche of Burkholderia thailandensis, which limits bacterial intercellular spread, host cell-cell fusion, and bacterial replication. In macrophages, combined loss of key PANoptosis components results in extensive B. thailandensis infection-induced cell-cell fusion, bacterial replication, and increased cell death at later stages of infection compared with both wild-type (WT) and pyroptosis-deficient cells. During respiratory infection, mortality was increased in PANoptosis-deficient mice compared to pyroptosis-deficient mice, identifying an essential role for multiple cell death pathways in controlling B. thailandensis infection. These findings advance our understanding of the physiological role of programmed cell death in controlling Burkholderia infection.


Assuntos
Apoptose/imunologia , Infecções por Burkholderia/imunologia , Burkholderia/patogenicidade , Imunidade Inata , Macrófagos/microbiologia , Macrófagos/patologia , Animais , Burkholderia/imunologia , Caspases/classificação , Caspases/genética , Caspases/imunologia , Feminino , Masculino , Camundongos , Necroptose/imunologia , Piroptose/imunologia
8.
J Immunol ; 207(1): 115-124, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145059

RESUMO

Cellular stress can induce cytoplasmic ribonucleoprotein complexes called stress granules that allow the cells to survive. Stress granules are also central to cellular responses to infections, in which they can act as platforms for viral sensing or modulate innate immune signaling through pattern recognition receptors. However, the effect of innate immune signaling on stress granules is poorly understood. In this study, we report that prior induction of innate immune signaling through TLRs inhibited stress granule assembly in a TLR ligand dose-dependent manner in murine bone marrow-derived macrophages. Time course analysis suggests that TLR stimulation can reverse stress granule assembly even after it has begun. Additionally, both MYD88- and TRIF-mediated TLR signaling inhibited stress granule assembly in response to endoplasmic reticulum stress in bone marrow-derived macrophages and the chemotherapeutic drug oxaliplatin in murine B16 melanoma cells. This inhibition was not due to a decrease in expression of the critical stress granule proteins G3BP1 and DDX3X and was independent of IRAK1/4, JNK, ERK and P38 kinase activity but dependent on IKK complex kinase activity. Overall, we have identified the TLR-IKK complex signaling axis as a regulator of stress granule assembly-disassembly dynamics, highlighting cross-talk between processes that are critical in health and disease.


Assuntos
Quinase I-kappa B/imunologia , Imunidade Inata/imunologia , Grânulos de Estresse/imunologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Quinase I-kappa B/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
9.
Cancer Res ; 81(9): 2358-2372, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619117

RESUMO

Macrophages are critical mediators of tissue homeostasis, cell proliferation, and tumor metastasis. Tumor-associated macrophages (TAM) are generally associated with tumor-promoting immunosuppressive functions in solid tumors. Here, we examined the transcriptional landscape of adaptor molecules downstream of Toll-like receptors in human cancers and found that higher expression of MYD88 correlated with tumor progression. In murine melanoma, MyD88, but not Trif, was essential for tumor progression, angiogenesis, and maintaining the immunosuppressive phenotype of TAMs. In addition, MyD88 expression in myeloid cells drove melanoma progression. The MyD88/IL1 receptor (IL1R) axis regulated programmed cell death (PD)-1 expression on TAMs by promoting recruitment of NF-κBp65 to the Pdcd1 promoter. Furthermore, a combinatorial immunotherapy approach combining the MyD88 inhibitor with anti-PD-1 blockade elicited strong antitumor effects. Thus, the MyD88/IL1R axis maintains the immunosuppressive function of TAMs and promotes tumor growth by regulating PD-1 expression. SIGNIFICANCE: These findings indicate that MyD88 regulates TAM-immunosuppressive activity, suggesting that macrophage-mediated immunotherapy combining MYD88 inhibitors with PD-1 blockade could result in better treatment outcomes in a wide variety of cancers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2358/F1.large.jpg.


Assuntos
Tolerância Imunológica/genética , Melanoma/imunologia , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1/genética , Neoplasias Cutâneas/patologia
10.
Cell ; 184(1): 149-168.e17, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33278357

RESUMO

COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Interferon gama/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Morte Celular , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Inflamação/patologia , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , Células THP-1
11.
Immunohorizons ; 4(12): 789-796, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310881

RESUMO

Bacterial pathogens from the genus Yersinia cause fatal sepsis and gastritis in humans. Innate immune signaling and inflammatory cell death (pyroptosis, apoptosis, and necroptosis [PANoptosis]) serve as a first line of antimicrobial host defense. The receptor-interacting protein kinase 1 (RIPK1) is essential for Yersinia-induced pyroptosis and apoptosis and an effective host response. However, it is not clear whether RIPK1 assembles a multifaceted cell death complex capable of regulating caspase-dependent pyroptosis and apoptosis or whether there is cross-talk with necroptosis under these conditions. In this study, we report that Yersinia activates PANoptosis, as evidenced by the concerted activation of proteins involved in PANoptosis. Genetic deletion of RIPK1 abrogated the Yersinia-induced activation of the inflammasome/pyroptosis and apoptosis but enhanced necroptosis. We also found that Yersinia induced assembly of a RIPK1 PANoptosome complex capable of regulating all three branches of PANoptosis. Overall, our results demonstrate a role for the RIPK1 PANoptosome in Yersinia-induced inflammatory cell death and host defense.


Assuntos
Inflamação/patologia , Necroptose , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Animais , Inflamassomos , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais
12.
bioRxiv ; 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33140051

RESUMO

The COVID-19 pandemic has caused significant morbidity and mortality. Currently, there is a critical shortage of proven treatment options and an urgent need to understand the pathogenesis of multi-organ failure and lung damage. Cytokine storm is associated with severe inflammation and organ damage during COVID-19. However, a detailed molecular pathway defining this cytokine storm is lacking, and gaining mechanistic understanding of how SARS-CoV-2 elicits a hyperactive inflammatory response is critical to develop effective therapeutics. Of the multiple inflammatory cytokines produced by innate immune cells during SARS-CoV-2 infection, we found that the combined production of TNF-α and IFN-γ specifically induced inflammatory cell death, PANoptosis, characterized by gasdermin-mediated pyroptosis, caspase-8-mediated apoptosis, and MLKL-mediated necroptosis. Deletion of pyroptosis, apoptosis, or necroptosis mediators individually was not sufficient to protect against cell death. However, cells deficient in both RIPK3 and caspase-8 or RIPK3 and FADD were resistant to this cell death. Mechanistically, the JAK/STAT1/IRF1 axis activated by TNF-α and IFN-γ co-treatment induced iNOS for the production of nitric oxide. Pharmacological and genetic deletion of this pathway inhibited pyroptosis, apoptosis, and necroptosis in macrophages. Moreover, inhibition of PANoptosis protected mice from TNF-α and IFN-γ-induced lethal cytokine shock that mirrors the pathological symptoms of COVID-19. In vivo neutralization of both TNF-α and IFN-γ in multiple disease models associated with cytokine storm showed that this treatment provided substantial protection against not only SARS-CoV-2 infection, but also sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock models, demonstrating the broad physiological relevance of this mechanism. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other cytokine storm-driven syndromes by limiting inflammation and tissue damage. The findings also provide a molecular and mechanistic description for the term cytokine storm. Additionally, these results open new avenues for the treatment of other infectious and autoinflammatory diseases and cancers where TNF-α and IFN-γ synergism play key pathological roles.

13.
Nat Protoc ; 15(10): 3284-3333, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895525

RESUMO

Inflammasomes are multimeric heterogeneous mega-Dalton protein complexes that play key roles in the host innate immune response to infection and sterile insults. Assembly of the inflammasome complex following infection or injury begins with the oligomerization of the upstream inflammasome-forming sensor and proceeds through a multistep process of well-coordinated events and downstream effector functions. Together, these steps enable elegant experimental readouts with which to reliably assess the successful activation of the inflammasome complex and cell death. Here, we describe a comprehensive protocol that details several in vitro (in bone marrow-derived macrophages) and in vivo (in mice) strategies for activating the inflammasome and explain how to subsequently assess multiple downstream effects in parallel to unequivocally establish the activation status of the inflammasome and cell death pathways. Our workflow assesses inflammasome activation via the formation of the apoptosis-associated speck-like protein containing a CARD (ASC) speck; cleavage of caspase-1 and gasdermin D; release of IL-1ß, IL-18, caspase-1, and lactate dehydrogenase from the cell; and real-time analysis of cell death by imaging. Analyses take up to ~24 h to complete. Overall, our multifaceted approach provides a comprehensive and consistent protocol for assessing inflammasome activation and cell death.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Inflamassomos/metabolismo , Inflamassomos/fisiologia , Animais , Apoptose , Caspase 1/metabolismo , Morte Celular/fisiologia , Feminino , Imunidade Inata , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo
14.
J Immunol ; 205(10): 2778-2785, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32989095

RESUMO

Mutations in MEFV, the gene encoding pyrin in humans, are associated with the autoinflammatory disorder familial Mediterranean fever. Pyrin is an innate sensor that assembles into an inflammasome complex in response to Rho-modifying toxins, including Clostridium difficile toxins A and B. Cell death pathways have been shown to intersect with and modulate inflammasome activation, thereby affecting host defense. Using bone marrow-derived macrophages and a murine model of peritonitis, we show in this study that receptor-interacting protein kinase (RIPK) 3 impacts pyrin inflammasome activation independent of its role in necroptosis. RIPK3 was instead required for transcriptional upregulation of Mefv through negative control of the mechanistic target of rapamycin (mTOR) pathway and independent of alterations in MAPK and NF-κB signaling. RIPK3 did not affect pyrin dephosphorylation associated with inflammasome activation. We further demonstrate that inhibition of mTOR was sufficient to promote Mefv expression and pyrin inflammasome activation, highlighting the cross-talk between the mTOR pathway and regulation of the pyrin inflammasome. Our study reveals a novel interaction between molecules involved in cell death and the mTOR pathway to regulate the pyrin inflammasome, which can be harnessed for therapeutic interventions.


Assuntos
Inflamassomos/imunologia , Peritonite/imunologia , Pirina/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/imunologia , Células Cultivadas , Modelos Animais de Doenças , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Macrófagos , Camundongos , Camundongos Knockout , Mutação , Necroptose/imunologia , Peritonite/microbiologia , Fosforilação/imunologia , Cultura Primária de Células , Pirina/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ativação Transcricional/imunologia , Regulação para Cima
15.
J Biol Chem ; 295(41): 14040-14052, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763970

RESUMO

Coronaviruses have caused several zoonotic infections in the past two decades, leading to significant morbidity and mortality globally. Balanced regulation of cell death and inflammatory immune responses is essential to promote protection against coronavirus infection; however, the underlying mechanisms that control these processes remain to be resolved. Here we demonstrate that infection with the murine coronavirus mouse hepatitis virus (MHV) activated the NLRP3 inflammasome and inflammatory cell death in the form of PANoptosis. Deleting NLRP3 inflammasome components or the downstream cell death executioner gasdermin D (GSDMD) led to an initial reduction in cell death followed by a robust increase in the incidence of caspase-8- and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated inflammatory cell deathafter coronavirus infection. Additionally, loss of GSDMD promoted robust NLRP3 inflammasome activation. Moreover, the amounts of some cytokines released during coronavirus infection were significantly altered in the absence of GSDMD. Altogether, our findings show that inflammatory cell death, PANoptosis, is induced by coronavirus infection and that impaired NLRP3 inflammasome function or pyroptosis can lead to negative consequences for the host. These findings may have important implications for studies of coronavirus-induced disease.


Assuntos
Caspase 8/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Células Cultivadas , Coronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Citocinas/metabolismo , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Necroptose , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-32547960

RESUMO

Programmed cell death plays crucial roles in organismal development and host defense. Recent studies have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis, apoptosis, and necroptosis, three programmed cell death pathways traditionally considered autonomous. The growing body of evidence, in conjunction with the identification of molecules controlling the concomitant activation of all three pathways by pathological triggers, has led to the development of the concept of PANoptosis. During PANoptosis, inflammatory cell death occurs through the collective activation of pyroptosis, apoptosis, and necroptosis, which can circumvent pathogen-mediated inhibition of individual death pathways. Many of the molecular details of this emerging pathway are unclear. Here, we describe the activation of PANoptosis by bacterial and viral triggers and report protein interactions that reveal the formation of a PANoptosome complex. Infection of macrophages with influenza A virus, vesicular stomatitis virus, Listeria monocytogenes, or Salmonella enterica serovar Typhimurium resulted in robust cell death and the hallmarks of PANoptosis activation. Combined deletion of the PANoptotic components caspase-1 (CASP1), CASP11, receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and CASP8 largely protected macrophages from cell death induced by these pathogens, while deletion of individual components provided reduced or no protection. Further, molecules from the pyroptotic, apoptotic, and necroptotic cell death pathways interacted to form a single molecular complex that we have termed the PANoptosome. Overall, our study identifies pathogens capable of activating PANoptosis and the formation of a PANoptosome complex.


Assuntos
Apoptose , Necroptose , Piroptose , Animais , Caspase 1 , Caspase 8 , Caspases Iniciadoras , Vírus da Influenza A , Listeria monocytogenes , Macrófagos , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores , Salmonella typhimurium , Vírus da Estomatite Vesicular Indiana
17.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554929

RESUMO

Interferon regulatory factor 1 (IRF1) regulates diverse biological functions, including modulation of cellular responses involved in tumorigenesis. Genetic mutations and altered IRF1 function are associated with several cancers. Although the function of IRF1 in the immunobiology of cancer is emerging, IRF1-specific mechanisms regulating tumorigenesis and tissue homeostasis in vivo are not clear. Here, we found that mice lacking IRF1 were hypersusceptible to colorectal tumorigenesis. IRF1 functions in both the myeloid and epithelial compartments to confer protection against AOM/DSS-induced colorectal tumorigenesis. We further found that IRF1 also prevents tumorigenesis in a spontaneous mouse model of colorectal cancer. The attenuated cell death in the colons of Irf1-/- mice was due to defective pyroptosis, apoptosis, and necroptosis (PANoptosis). IRF1 does not regulate inflammation and the inflammasome in the colon. Overall, our study identified IRF1 as an upstream regulator of PANoptosis to induce cell death during colitis-associated tumorigenesis.


Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Fator Regulador 1 de Interferon/genética , Animais , Transformação Celular Neoplásica/genética , Neoplasias do Colo/metabolismo , Neoplasias Colorretais/metabolismo , Inflamassomos/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Camundongos , Necroptose/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-32582562

RESUMO

Programmed cell death is regulated by evolutionarily conserved pathways that play critical roles in development and the immune response. A newly recognized pathway for proinflammatory programmed cell death called PANoptosis is controlled by a recently identified cytoplasmic multimeric protein complex named the PANoptosome. The PANoptosome can engage, in parallel, three key modes of programmed cell death-pyroptosis, apoptosis, and necroptosis. The PANoptosome components have been implicated in a wide array of human diseases including autoinflammatory diseases, neurodegenerative diseases, cancer, microbial infections, and metabolic diseases. Here, we review putative components of the PANoptosome and present a phylogenetic analysis of their molecular domains and interaction motifs that support complex assembly. We also discuss genetic data that suggest PANoptosis is coordinated by scaffolding and catalytic functions of the complex components and propose mechanistic models for PANoptosome assembly. Overall, this review presents potential mechanisms governing PANoptosis based on evolutionary analysis of the PANoptosome components.


Assuntos
Necroptose , Piroptose , Apoptose , Humanos , Filogenia
19.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017655

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Assuntos
Caspases/metabolismo , Morte Celular , Inflamação/etiologia , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Animais , Apoptose , Biomarcadores , Caspases/genética , Morte Celular/genética , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Inflamação/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
20.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869420

RESUMO

RIPK1 kinase activity has been shown to be essential to driving pyroptosis, apoptosis, and necroptosis. However, here we show a kinase activity-independent role for RIPK1 in these processes using a model of TLR priming in a TAK1-deficient setting to mimic pathogen-induced priming and inhibition. TLR priming of TAK1-deficient macrophages triggered inflammasome activation, including the activation of caspase-8 and gasdermin D, and the recruitment of NLRP3 and ASC into a novel RIPK1 kinase activity-independent cell death complex to drive pyroptosis and apoptosis. Furthermore, we found fully functional RIPK1 kinase activity-independent necroptosis driven by the RIPK3-MLKL pathway in TAK1-deficient macrophages. In vivo, TAK1 inactivation resulted in RIPK3-caspase-8 signaling axis-driven myeloid proliferation and a severe sepsis-like syndrome. Overall, our study highlights a previously unknown mechanism for RIPK1 kinase activity-independent inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) that could be targeted for treatment of TAK1-associated myeloid proliferation and sepsis.


Assuntos
Apoptose/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , MAP Quinase Quinase Quinases/imunologia , Necroptose/imunologia , Piroptose/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Caspase 8/imunologia , Feminino , Inflamassomos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA