Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 43: 103672, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364665

RESUMO

Ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid (EDTMP), nitrilotri(methylphosphonic acid (ATMP) and zoledronic acid were studied to enhance the methylene blue-mediated photodynamic inactivation of Acinetobacter baumannii. Laser light (wavelength 638 nm; standard light output 40 mW) was used in all experiment. Planktonic cultures were irradiated for 10, 20 and 30 min which corresponded to the light dose of 63 Jcm‒ 2, 126 Jcm‒2 and 189 Jcm‒2. Biocidal effect depended on the exposure time and it was shown that MB alone caused the highest reduction in the number of viable cells by 3.10 ± 0.2 log10 units after 30 min of irradiation. A significantly more effective killing effect was achieved when the bacteria were pre-treated with zoledronate, ATMP, or EDTMP (prior to photosensitisation) as the number of viable bacteria was reduced by 4.04±0.2 log10, 3.95±0.2 log10 and 4.01 ± 0.2 log10, respectively. The photo-killing effect caused by MB against biofilm pre-incubated with zoledronate, ATMP, or EDTMP and the number of viable bacteria was reduced by 0.80±0.1 log10, 1.25±0.05 log10 and 0.65±0.05 log10, respectively. Polyphosphonic chelating agents increased the efficiency of photo-destruction of A. baumannii by increasing the amount of bound photosensitizer by planktonic cells and biofilm, and increasing the detachment of live planktonic cells from the biofilm. The presence of glucose in the photosensitizing system significantly affected the bacterial photo-elimination. Pre-incubation of planktonic bacteria with the studied polyphosphonic chelating agents in the presence of glucose, and then exposure to light (with MB) for 30 min caused the lethal effect. This photo-eradication protocol (in the case of biofilms) reduced the number of viable bacteria by 2.05±0.2 log10, 3.2±0.2 log10 and 2.02±0.2 log10 for zoledronic acid, ATMP and EDTMP, respectively.


Assuntos
Acinetobacter baumannii , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Ácido Zoledrônico/farmacologia , Luz , Biofilmes , Azul de Metileno/farmacologia , Antibacterianos/farmacologia
2.
J Photochem Photobiol B ; 240: 112650, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701884

RESUMO

Widespread skin infections caused primarily by bacteria and yeast, pose a growing threat to healthcare systems. Phyto-photodynamic antimicrobial therapy is a promising treatment strategy with a few mild side effects for both superficial and deeper skin infections. The combination of natural plant products (polyphenols) with conventional photosensitizers makes it possible to improve the outcome of skin infections. In the present study, nanoengineered self-assembling bilosomes were used as a nanoplatform to deliver two compounds with different solubility, i.e., curcumin applied as a hydrophobic phytochemical compound and Methylene Blue used as a hydrophilic photosensitizer. Compared with the encapsulation of Methylene Blue alone, the double-loaded bilosomes (curcumin-supported Methylene Blue) showed higher efficiency in generating reactive oxygen species. Importantly, in our study, we also confirmed that bioinspired bilosomes prevent the rapid photobleaching of Methylene Blue, thereby enhancing its photoactivity. The post-irradiation antimicrobial action was tested against two pathogens - the Gram-positive bacterium (Staphylococcus aureus) and yeast (Candida albicans). The irradiation was provided after 10, 20, and 30 min, at a specific wavelength (λ = 640 nm) corresponding to 63, 126, and 189 J cm-2 energy fluences. The most effective reduction in the microbial cells number was found 30 min post-irradiation and was 99.994% for double-loaded bilosomes compared to 99.989% killing S. aureus for bilosomes with Methylene Blue alone. For C. albicans fungal cells, the mortality was 99.669% in the presence of a Methylene Blue and curcumin mixture compared to 98.229% of those killed without the addition of curcumin. The overall results of our contribution provide evidence that curcumin in combination with MB enhances the photo-eradication efficiency of S. aureus and C. albicans planktonic cultures. Thus, the mixture of the phytochemicals with photosensitizers and their encapsulation in multifunctional bilosomes may contribute to the development of innovative antimicrobial phyto-photodynamic therapy in the future.


Assuntos
Curcumina , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Azul de Metileno/farmacologia , Azul de Metileno/química , Curcumina/farmacologia , Staphylococcus aureus , Fotoquimioterapia/métodos , Candida albicans
3.
Sci Rep ; 12(1): 1913, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115588

RESUMO

The use of antimicrobial photodynamic inactivation as a non-antibiotic alternative method to inactivate Acinetobacter baumannii was described in response to the ever-growing problem of antibiotic resistance. It was found that irradiation of the bacterial suspension for 10 min reduced the number of viable cells by approximately 99% and this energy fluence was considered to be sub-lethal phototherapy. The lethal dose of laser light (cell mortality about 99.9%) was 9.54 J cm-2, which corresponds to 30 min of irradiation. After a 15-fold phototherapy cycle, the tolerance to aPDT decreased, resulting in a decrease in the number of viable cells by 2.15 and 3.23 log10 CFU/ml units with the use of sub-lethal and lethal light doses, respectively. Multiple photosensitizations decreased the biofilm formation efficiency by 25 ± 1% and 35 ± 1%, respectively. No changes in antibiotic resistance were observed, whereas the cells were more sensitive to hydrogen peroxide. Metabolomic changes after multiple photosensitization were studied and 1H NMR measurements were used in statistical and multivariate data analysis. Many significant changes in the levels of the metabolites were detected demonstrating the response of A. baumannii to oxidative stress.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Acinetobacter baumannii/metabolismo , Trifosfato de Adenosina/metabolismo , Farmacorresistência Bacteriana , Metaboloma , Metabolômica , Viabilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Espécies Reativas de Oxigênio/metabolismo
4.
Photodiagnosis Photodyn Ther ; 34: 102242, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33662618

RESUMO

Antimicrobial photodynamic inactivation is currently one of the most promising trends in the modern bactericidal protocols. Under the conditions defined in our studies, we found that in vitro photosensitization of A. baumannii with 5-ALA as a precursor of protoporphyrin IX (photosensitizer) reduces the concentration of viable cells in planktonic cultures, and this process can be strongly enhanced by pentamidine. Diode lasers with the peak-power wavelength of ʎ = 405 nm (radiation intensity of 26 mW cm-2) and ʎ = 635 nm (radiation intensity of 55 mW cm-2) were used in this study. It was found that a blue laser light (energy fluence of 64 J cm-2; no external photosensitizer) in the presence of pentamidine resulted in a reduction of CFU of 99.992 % compared to 99.97 % killing without pentamidine. When a red laser light was used in the experiments (energy fluence of 136 J cm-2; no external photosensitizer), the mortality rate was 99.98 % in the presence of pentamidine compared to 99.93 % of those killed without the addition of this drug. The lethal effect with 5-ALA was achieved under blue light fluence of 16 J cm-2 (in the presence of pentamidine) and 32 J cm-2 (without pentamidine). In the case of laser light of 635 nm, the lethal effect with 5-ALA was attained with energy fluence of 51 J cm-2 (with pentamidine) and 102 J cm-2 (without pentamidine). The possible roles of pentamidine in enhancing photodynamic inactivation of A. baumannii have been discussed.


Assuntos
Acinetobacter baumannii , Fotoquimioterapia , Lasers Semicondutores , Pentamidina , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
5.
Bioorg Chem ; 93: 102803, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30799034

RESUMO

This contribution describes the biomineralization of silver nanoparticles by the microbial reduction of Ag (I) ions using the mycelium and the cell-free extract of Penicillium cyclopium. Different techniques, such as UV-Vis, SEM, TEM, FT-IR and GPC were used to characterize the obtained nanoparticles and understand the mechanism of their biosynthesis. The SEM and TEM images demonstrated the presence of silver nanoparticles on the mycelia surface suggesting that these particles are synthesized on the fungal cell wall. FT-IR analysis of the mycelium revealed two main types of compounds (saccharides and proteins) and these molecules might be involved in the formation of silver nanoparticles on the surface of mycelium. Ultraviolet-visible spectroscopy and TEM analysis confirmed the formation of silver nanoparticles with different shapes by the cell-free extract of P. cyclopium. Their size ranges from 12 to 25 nm and possess an average size of 16 ±â€¯6 nm. GPC analysis of this filtrate revealed a few peaks responsible for polysaccharides and proteins presence. The only protein fraction with the mass approximately to 5000 Da indicated the formation of silver nanoparticles. Polypeptide(s) as the major molecules involved in biomineralization of silver by the cell-free extract of P. cyclopium are suggested. Enzymatic synthesis of silver nanoparticles by the mycelium and the cell-free extract of P. cyclopium is excluded.


Assuntos
Nanopartículas Metálicas/química , Penicillium/metabolismo , Prata/química , Micélio/química , Micélio/metabolismo , Micélio/ultraestrutura
6.
Materials (Basel) ; 11(5)2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29710873

RESUMO

A surface modification of polyamide 6 (PA), polyethylene terephthalate (PET) and polypropylene (PP) textiles was performed using zinc oxide to obtain antibacterial layer. ZnO microrods were synthesized on ZnO nanoparticles (NPs) as a nucleus centers by chemical bath deposition (CBD) process. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) indicated that wurzite ZnO microrods were obtained on every sample. Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Liquid Absorption Capacity (LAC) analysis indicate that the amount and structure of antibacterial layer is dependent on roughness and wettability of textile surface. The rougher and more hydrophilic is the material, the more ZnO were deposited. All studied textiles show significant bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A possible mechanism and difference in sensitivity between Gram-negative and Gram-positive bacteria to ZnO is discussed. Considering that antibacterial activity of ZnO is caused by Reactive Oxygen Species (ROS) generation, an influence of surface to volume ratio and crystalline parameters is also discussed.

7.
Lasers Med Sci ; 33(1): 79-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986706

RESUMO

At the present time, photodynamic inactivation (PDI) is receiving considerable interest for its potential as an antimicrobial therapy. The results of our study indicate that enhancement of the phototoxic effect on Pseudomonas aeruginosa can be achieved by combination of tetrasulfonated hydroxyaluminum phthalocyanine (AlPcS4) and bimetallic gold/silver nanoparticles (Au/Ag-NPs) synthesized by the cell-free filtrate of Aureobasidium pullulans. The bimetallic nanoparticles were characterized by a number of techniques including UV-vis, XPS, TEM, and SEM-EDS to be 14 ± 3 nm spherical particles coated with proteins. The effect of diode lasers with the peak-power wavelength ʎ = 650 nm (output power of 10 and 40 mW; radiation intensity of 26 and 105 mW/cm2) in combination with the AlPcS4 and the bimetallic nanoparticles mixture on the viability of P. aeruginosa rods was shown. Particularly high efficiency of killing bacterial cells was obtained for the light intensity of 105 mW/cm2, after 20, 30, and 40 min of irradiation corresponding to 126, 189, and 252 J/cm2 energy fluences. For AlPcS4+Au/Ag-NPs treatment, the viable count reduction were equal to 99.90, 99.96, and 99.975%, respectively. These results were significantly better than those accomplished for irradiated separated assays of AlPcS4 and Au/Ag-NPs.


Assuntos
Antibacterianos/farmacologia , Indóis/farmacologia , Luz , Compostos Organometálicos/farmacologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/efeitos da radiação , Ouro/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Espectroscopia Fotoeletrônica , Fármacos Fotossensibilizantes/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Espectrometria por Raios X
8.
Peptides ; 35(2): 276-84, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22516177

RESUMO

A series of linear and cyclic fragments and analogs of two peptides (OGTI and HV-BBI) isolated from skin secretions of frogs were synthesized by the solid-phase method. Their inhibitory activity against several serine proteinases: bovine ß-trypsin, bovine α-chymotypsin, human leukocyte elastase and cathepsin G from human neutrophils, was investigated together with evaluation of their antimicrobial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive species isolated from patients (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus sp., Streptococcus sp.). The cytotoxicity of the selected peptides toward an immortal human skin fibroblast cell line was also determined. Three peptides: HV-BBI, its truncated fragment HV-BBI(3-18) and its analog [Phe(8)]HV-BBI can be considered as bifunctional compounds with inhibitory as well as antibacterial properties. OGTI, although it did not display trypsin inhibitory activity as previously reported in the literature, exerted antimicrobial activity toward S. epidermidis. In addition, under our experimental conditions, this peptide did not show cytotoxicity.


Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos/farmacologia , Proteínas de Anfíbios/química , Proteínas de Anfíbios/toxicidade , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Anuros , Catepsina G/antagonistas & inibidores , Catepsina G/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quimotripsina/antagonistas & inibidores , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Elastase de Leucócito/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Neutrófilos/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/toxicidade , Pele/metabolismo , Staphylococcus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Tripsina/efeitos dos fármacos , Inibidores da Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA