Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAbs ; 13(1): 1955812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34420474

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infections resulting in medical intervention and hospitalizations during infancy and early childhood, and vaccination against RSV remains a public health priority. The RSV F glycoprotein is a major target of neutralizing antibodies, and the prefusion stabilized form of F (DS-Cav1) is under investigation as a vaccine antigen. AM14 is a human monoclonal antibody with the exclusive capacity of binding an epitope on prefusion F (PreF), which spans two F protomers. The quality of recognizing a trimer-specific epitope makes AM14 valuable for probing PreF-based immunogen conformation and functionality during vaccine production. Currently, only a low-resolution (5.5 Å) X-ray structure is available of the PreF-AM14 complex, revealing few reliable details of the interface. Here, we perform complementary structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM) to provide improved resolution structures at 3.6 Å and 3.4 Å resolutions, respectively. Both X-ray and cryo-EM structures provide clear side-chain densities, which allow for accurate mapping of the AM14 epitope on DS-Cav1. The structures help rationalize the molecular basis for AM14 loss of binding to RSV F monoclonal antibody-resistant mutants and reveal flexibility for the side chain of a key antigenic residue on PreF. This work provides the basis for a comprehensive understanding of RSV F trimer specificity with implications in vaccine design and quality assessment of PreF-based immunogens.


Assuntos
Anticorpos Monoclonais/ultraestrutura , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/química , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Células CHO , Cricetulus , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Mutação , Conformação Proteica , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Relação Estrutura-Atividade , Desenvolvimento de Vacinas , Proteínas Virais de Fusão/genética
2.
PLoS Pathog ; 16(11): e1008943, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137810

RESUMO

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Imunogenicidade da Vacina/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Bovinos , Cristalografia por Raios X , Humanos , Imunização , Modelos Estruturais
3.
Curr Opin Virol ; 31: 43-51, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866439

RESUMO

The ß-herpesvirus human cytomegalovirus (HCMV) is the leading viral cause of neonatal developmental disabilities. In HCMV, the conserved herpesvirus glycoprotein B (gB) mediates membrane fusion between the viral and host cell membranes, whereas the trimeric gH/gL/gO or the pentameric gH/gL/UL128/UL130/UL31A complexes (Pentamer) bind to cell-specific receptors and provide the triggering signal to gB. Recent structural and functional studies have provided new insights into Pentamer structure, conformational flexibility, location of epitopes for neutralizing antibodies and potential binding sites for cell surface receptors. Together, these data suggest a model where receptor binding triggers a conformational change in Pentamer, allowing it to interact with gB and initiate the membrane fusion process.


Assuntos
Anticorpos Neutralizantes/imunologia , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Internalização do Vírus , Sítios de Ligação , Citomegalovirus/metabolismo , Humanos , Fusão de Membrana , Ligação Proteica , Proteínas do Envelope Viral/metabolismo
4.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 6): 305-314, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580917

RESUMO

Neisserial heparin-binding antigen (NHBA) is a surface-exposed lipoprotein from Neisseria meningitidis and is a component of the meningococcus B vaccine Bexsero. As part of a study to characterize the three-dimensional structure of NHBA and the molecular basis of the human immune response to Bexsero, the crystal structures of two fragment antigen-binding domains (Fabs) isolated from human monoclonal antibodies targeting NHBA were determined. Through a high-resolution analysis of the organization and the amino-acid composition of the CDRs, these structures provide broad insights into the NHBA epitopes recognized by the human immune system. As expected, these Fabs also show remarkable structural conservation, as shown by a structural comparison of 15 structures of apo Fab 10C3 which were obtained from crystals grown in different crystallization conditions and were solved while searching for a complex with a bound NHBA fragment or epitope peptide. This study also provides indirect evidence for the intrinsically disordered nature of two N-terminal regions of NHBA.


Assuntos
Anticorpos Antibacterianos/química , Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Fragmentos Fab das Imunoglobulinas/química , Vacinas Meningocócicas/química , Neisseria meningitidis/química , Sequência de Aminoácidos , Anticorpos Antibacterianos/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/imunologia , Cinética , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Modelos Moleculares , Neisseria meningitidis/imunologia , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
5.
Comput Struct Biotechnol J ; 14: 58-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26862374

RESUMO

For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.

6.
FASEB J ; 29(11): 4629-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26202865

RESUMO

Group B Streptococcus (GBS) expresses 3 structurally distinct pilus types (1, 2a, and 2b) identified as important virulence factors and vaccine targets. These pili are heterotrimeric polymers, covalently assembled on the cell wall by sortase (Srt) enzymes. We investigated the pilus-2b biogenesis mechanism by using a multidisciplinary approach integrating genetic, biochemical, and structural studies to dissect the role of the 2 pilus-2b-associated Srts. We show that only 1 sortase (SrtC1-2b) is responsible for pilus protein polymerization, whereas the second one (Srt2-2b) does not act as a pilin polymerase, but similarly to the housekeeping class A Srt (SrtA), it is involved in cell-wall pilus anchoring by targeting the minor ancillary subunit. Based on its function and sequence features, Srt2-2b does not belong to class C Srts (SrtCs), nor is it a canonical member of any other known family of Srts. We also report the crystal structure of SrtC1-2b at 1.9 Å resolution. The overall fold resembles the typical structure of SrtCs except for the N-terminal lid region that appears in an open conformation displaced from the active site. Our findings reveal that GBS pilus type 2b biogenesis differs significantly from the current model of pilus assembly in gram-positive pathogens.


Assuntos
Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Fímbrias Bacterianas/enzimologia , Streptococcus agalactiae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/genética , Estrutura Terciária de Proteína , Streptococcus agalactiae/genética
7.
Proc Natl Acad Sci U S A ; 110(9): 3304-9, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23396847

RESUMO

Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen-antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å(2) on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen-antibody interfaces are required to understand and design effective immunogens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Epitopos/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Fatores de Virulência/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Técnicas de Visualização da Superfície Celular , Cristalografia por Raios X , Medição da Troca de Deutério , Mapeamento de Epitopos , Epitopos/química , Espectrometria de Massas , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica/imunologia , Ressonância de Plasmônio de Superfície , Fatores de Virulência/química
8.
FASEB J ; 25(6): 1874-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21357525

RESUMO

In group B Streptococcus (GBS), 3 structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular-weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies, and in vivo mutagenesis, we performed a broad characterization of GBS sortase C1 of pilus island 2a. The high-resolution X-ray structure of the enzyme revealed that the active site, into the ß-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the "lid." We show that the catalytic triad and the predicted N- and C-terminal transmembrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies, we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild-type protein.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Fímbrias Bacterianas/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus agalactiae/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Plasmídeos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Streptococcus agalactiae/genética
9.
J Biol Chem ; 284(21): 14177-88, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19321446

RESUMO

Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.


Assuntos
Biocatálise , Insulina/química , Insulina/metabolismo , Insulisina/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína , Humanos , Insulisina/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
J Biol Chem ; 284(21): 14645-56, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19307185

RESUMO

Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.


Assuntos
Bacillus anthracis/citologia , Bacillus anthracis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Perforina/química , Perforina/metabolismo , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Células CACO-2 , Cálcio/metabolismo , Cristalografia por Raios X , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Humanos , Intestinos/citologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ionomicina/farmacologia , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ocludina , Permeabilidade/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solubilidade/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
11.
Biochemistry ; 47(48): 12822-34, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18986166

RESUMO

Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid beta (Abeta). Tight interactions with substrates occur at an exosite located approximately 30 A away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 A crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K(m) values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.


Assuntos
Cisteína/metabolismo , Insulisina/química , Insulisina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Alquilação , Substituição de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Insulisina/antagonistas & inibidores , Insulisina/genética , Calidina/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Modelos Moleculares , Oxirredução , Processamento de Proteína Pós-Traducional , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo
12.
J Am Chem Soc ; 129(37): 11480-90, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17705484

RESUMO

As part of our ongoing studies of the human immunodeficiency virus type 1 (HIV-1) protease enzyme, we set out to develop a modular chemical synthesis of the protein from multiple peptide segments. Our initial attempts were frustrated by the insolubility of intermediate peptide products. To overcome this problem, we designed a synthetic strategy combining the solubility-enhancing properties of C-terminal (Arg)n tags and the biological phenomenon of autoprocessing of the Gag-Pol polyprotein that occurs during maturation of the HIV-1 virus in vivo. Synthesis of a 119-residue peptide chain containing 10 residues of the reverse transcriptase (RT) open reading frame plus an (Arg)(10) tag at the C-terminus was straightforward by native chemical ligation followed by conversion of the Cys residues to Ala by Raney nickel desulfurization. The product polypeptide itself completed the final synthetic step by removing the C-terminal modification under folding conditions, to give the mature 99-residue polypeptide. High-purity homodimeric HIV-1 protease protein was obtained in excellent yield and had full enzymatic activity; the structure of the synthetic enzyme was confirmed by X-ray crystallography to a resolution of 1.07 A. This efficient modular synthesis by a biomimetic autoprocessing strategy will enable the facile synthesis of unique chemical analogues of the HIV-1 protease to further elucidate the molecular basis of enzyme catalysis.


Assuntos
Protease de HIV , Modelos Químicos , Sequência de Aminoácidos , Aminoácidos/química , Proteínas de Fusão gag-pol/química , Protease de HIV/síntese química , Protease de HIV/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Dobramento de Proteína
13.
J Biol Chem ; 282(35): 25453-63, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17613531

RESUMO

Insulin-degrading enzyme (IDE) is a zinc metalloprotease that hydrolyzes amyloid-beta (Abeta) and insulin, which are peptides associated with Alzheimer disease (AD) and diabetes, respectively. Our previous structural analysis of substrate-bound human 113-kDa IDE reveals that the N- and C-terminal domains of IDE, IDE-N and IDE-C, make substantial contact to form an enclosed catalytic chamber to entrap its substrates. Furthermore, IDE undergoes a switch between the closed and open conformations for catalysis. Here we report a substrate-free IDE structure in its closed conformation, revealing the molecular details of the active conformation of the catalytic site of IDE and new insights as to how the closed conformation of IDE may be kept in its resting, inactive conformation. We also show that Abeta is degraded more efficiently by IDE carrying destabilizing mutations at the interface of IDE-N and IDE-C (D426C and K899C), resulting in an increase in Vmax with only minimal changes to Km. Because ATP is known to activate the ability of IDE to degrade short peptides, we investigated the interaction between ATP and activating mutations. We found that these mutations rendered IDE less sensitive to ATP activation, suggesting that ATP might facilitate the transition from the closed state to the open conformation. Consistent with this notion, we found that ATP induced an increase in hydrodynamic radius, a shift in electrophoretic mobility, and changes in secondary structure. Together, our results highlight the importance of the closed conformation for regulating the activity of IDE and provide new molecular details that will facilitate the development of activators and inhibitors of IDE.


Assuntos
Trifosfato de Adenosina/química , Insulisina/química , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/enzimologia , Substituição de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Diabetes Mellitus/enzimologia , Humanos , Insulina/química , Insulina/metabolismo , Insulisina/metabolismo , Cinética , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
J Mol Biol ; 364(2): 136-51, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17007874

RESUMO

Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sites. ATP binds in a cavity where residues from both the N and C-terminal lobes contribute to form a cleft, while the choline-binding site constitutes a deep hydrophobic groove in the C-terminal domain with a rim composed of negatively charged residues. Upon binding of choline, the enzyme undergoes conformational changes independently affecting the N-terminal domain and the ATP-binding loop. From this structural analysis and comparison with other kinases, and from mutagenesis data on the homologous Caenorhabditis elegans choline kinase, a model of the ternary ADP.phosphocholine complex was built that reveals the molecular basis for the phosphoryl transfer activity of this enzyme.


Assuntos
Difosfato de Adenosina/química , Colina Quinase/química , Colina/química , Modelos Moleculares , Fosforilcolina/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA