Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(17): e2307263, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441406

RESUMO

Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.


Assuntos
Apoptose , Biomarcadores Tumorais , Ferroptose , Ferroptose/genética , Humanos , Animais , Camundongos , Apoptose/genética , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Biomarcadores/metabolismo
2.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595565

RESUMO

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Assuntos
Viroses , Humanos , Células Eucarióticas , Células Procarióticas , Trifosfato de Adenosina , N-Glicosil Hidrolases
3.
Cancer Discov ; 13(7): 1616-1635, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-36972357

RESUMO

Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE: Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Fígado , Neoplasias Pancreáticas , Humanos , Fígado/metabolismo , Carcinogênese/patologia , Hepatócitos , Neoplasias Pancreáticas/patologia , Imunidade Inata , Microambiente Tumoral
4.
J Am Chem Soc ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951643

RESUMO

Reactions involving the transfer of a phosphoryl (-PO32-) group are fundamental to cellular metabolism. These reactions are catalyzed by enzymes, often large and complex, belonging to the phosphate-binding loop (P-loop) nucleoside triphosphatase (NTPase) superfamily. Due to their critical importance in life, it is reasonable to assume that phosphoryl-transfer reactions were also crucial in the pre-LUCA (last universal common ancestor) world and mediated by precursors that were simpler, in terms of their sequence and structure, relative to their modern-day enzyme counterparts. Here, we demonstrate that short phosphate-binding polypeptides (∼50 residues) comprising a single, ancestrally inferred, P-loop or Walker A motif mediate the reversible transfer of a phosphoryl group between two adenosine diphosphate molecules to synthesize adenosine triphosphate and adenosine monophosphate. This activity, although rudimentary, bears resemblance to that of adenylate kinase (a P-loop NTPase enzyme). The polypeptides, dubbed as "P-loop prototypes", thus relate to contemporary P-loop NTPases in terms of their sequence and function, and yet, given their simplicity, serve as plausible representatives of the early "founder enzymes" involved in proto-metabolic pathways.

5.
J Am Chem Soc ; 145(6): 3346-3360, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738297

RESUMO

Electrophiles for covalent inhibitors that are suitable for in vivo administration are rare. While acrylamides are prevalent in FDA-approved covalent drugs, chloroacetamides are considered too reactive for such purposes. We report sulfamate-based electrophiles that maintain chloroacetamide-like geometry with tunable reactivity. In the context of the BTK inhibitor ibrutinib, sulfamate analogues showed low reactivity with comparable potency in protein labeling, in vitro, and cellular kinase activity assays and were effective in a mouse model of CLL. In a second example, we converted a chloroacetamide Pin1 inhibitor to a potent and selective sulfamate acetamide with improved buffer stability. Finally, we show that sulfamate acetamides can be used for covalent ligand-directed release (CoLDR) chemistry, both for the generation of "turn-on" probes as well as for traceless ligand-directed site-specific labeling of proteins. Taken together, this chemistry represents a promising addition to the list of electrophiles suitable for in vivo covalent targeting.


Assuntos
Acetamidas , Inibidores de Proteínas Quinases , Camundongos , Animais , Ligantes , Inibidores de Proteínas Quinases/farmacologia
6.
J Biol Chem ; 298(4): 101735, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181339

RESUMO

Dihydroceramide is a lipid molecule generated via the action of (dihydro)ceramide synthases (CerSs), which use two substrates, namely sphinganine and fatty acyl-CoAs. Sphinganine is generated via the sequential activity of two integral membrane proteins located in the endoplasmic reticulum. Less is known about the source of the fatty acyl-CoAs, although a number of cytosolic proteins in the pathways of acyl-CoA generation modulate ceramide synthesis via direct or indirect interaction with the CerSs. In this study, we demonstrate, by proteomic analysis of immunoprecipitated proteins, that fatty acid transporter protein 2 (FATP2) (also known as very long-chain acyl-CoA synthetase) directly interacts with CerS2 in mouse liver. Studies in cultured cells demonstrated that other members of the FATP family can also interact with CerS2, with the interaction dependent on both proteins being catalytically active. In addition, transfection of cells with FATP1, FATP2, or FATP4 increased ceramide levels although only FATP2 and 4 increased dihydroceramide levels, consistent with their known intracellular locations. Finally, we show that lipofermata, an FATP2 inhibitor which is believed to directly impact tumor cell growth via modulation of FATP2, decreased de novo dihydroceramide synthesis, suggesting that some of the proposed therapeutic effects of lipofermata may be mediated via (dihydro)ceramide rather than directly via acyl-CoA generation. In summary, our study reinforces the idea that manipulating the pathway of fatty acyl-CoA generation will impact a wide variety of down-stream lipids, not least the sphingolipids, which utilize two acyl-CoA moieties in the initial steps of their synthesis.


Assuntos
Ceramidas , Coenzima A Ligases , Esfingosina N-Aciltransferase , Acil Coenzima A/metabolismo , Animais , Ceramidas/biossíntese , Fígado/metabolismo , Camundongos , Oxirredutases/metabolismo , Proteômica , Esfingosina N-Aciltransferase/metabolismo
7.
Nat Commun ; 13(1): 431, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058430

RESUMO

Microbial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of four non-ribosomal peptides/polyketide (NRPs/PKS) antibiotics produced by Bacillus subtilis clade, we revealed that they acted synergistically to effectively eliminate phylogenetically distinct competitors. The production of these antibiotics came with a fitness cost manifested in growth inhibition, rendering their synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, antibiotic production was only induced by the presence of a peptidoglycan cue from a sensitive competitor, a response mediated by the global regulator of cellular competence, ComA. These results experimentally demonstrate a general ecological concept - closely related communities are favoured during competition, due to compatibility in attack and defence mechanisms.


Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Peptidoglicano/metabolismo , Vias Biossintéticas , Nucleotídeos/metabolismo , Peptídeos/metabolismo , Plâncton/crescimento & desenvolvimento , Policetídeos/metabolismo , Regiões Promotoras Genéticas/genética , Ribossomos/metabolismo , Transcrição Gênica
8.
Nature ; 600(7887): 116-120, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853457

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a canonical component of animal and plant immune systems1,2. In plants, intracellular pathogen sensing by immune receptors triggers their TIR domains to generate a molecule that is a variant of cyclic ADP-ribose3,4. This molecule is hypothesized to mediate plant cell death through a pathway that has yet to be resolved5. TIR domains have also been shown to be involved in a bacterial anti-phage defence system called Thoeris6, but the mechanism of Thoeris defence remained unknown. Here we show that phage infection triggers Thoeris TIR-domain proteins to produce an isomer of cyclic ADP-ribose. This molecular signal activates a second protein, ThsA, which then depletes the cell of the essential molecule nicotinamide adenine dinucleotide (NAD) and leads to abortive infection and cell death. We also show that, similar to eukaryotic innate immune systems, bacterial TIR-domain proteins determine the immunological specificity to the invading pathogen. Our results describe an antiviral signalling pathway in bacteria, and suggest that the generation of intracellular signalling molecules is an ancient immunological function of TIR domains that is conserved in both plant and bacterial immunity.


Assuntos
Bacillus/imunologia , Bacillus/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Bacteriófagos/imunologia , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Receptores Toll-Like/química , ADP-Ribose Cíclica/análogos & derivados , ADP-Ribose Cíclica/metabolismo , Evolução Molecular , Modelos Moleculares , NAD/metabolismo , Domínios Proteicos , Especificidade por Substrato/imunologia
9.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723037

RESUMO

The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).


Assuntos
Acil-Butirolactonas/metabolismo , Apoptose , Bactérias/imunologia , Bactérias/metabolismo , Imunomodulação , Transdução de Sinais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Fenômenos Fisiológicos Bacterianos , Cromatografia Líquida , Humanos , Vigilância Imunológica , Espectrometria de Massas , Proteômica/métodos
10.
Science ; 371(6527): 400-405, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33479153

RESUMO

Key to the success of intracellular pathogens is the ability to sense and respond to a changing host cell environment. Macrophages exposed to microbial products undergo metabolic changes that drive inflammatory responses. However, the role of macrophage metabolic reprogramming in bacterial adaptation to the intracellular environment has not been explored. Here, using metabolic profiling and dual RNA sequencing, we show that succinate accumulation in macrophages is sensed by intracellular Salmonella Typhimurium (S. Tm) to promote antimicrobial resistance and type III secretion. S Tm lacking the succinate uptake transporter DcuB displays impaired survival in macrophages and in mice. Thus, S Tm co-opts the metabolic reprogramming of infected macrophages as a signal that induces its own virulence and survival, providing an additional perspective on metabolic host-pathogen cross-talk.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Ácido Succínico/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sobrevivência Celular , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Salmonella typhimurium/genética , Virulência
11.
Cell Rep ; 34(1): 108583, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406416

RESUMO

Gut microbiota have been shown to promote oogenesis and fecundity, but the mechanistic basis of remote influence on oogenesis remained unknown. Here, we report a systemic mechanism of influence mediated by bacterial-derived supply of mitochondrial coenzymes. Removal of microbiota decreased mitochondrial activity and ATP levels in the whole-body and ovary, resulting in repressed oogenesis. Similar repression was caused by RNA-based knockdown of mitochondrial function in ovarian follicle cells. Reduced mitochondrial function in germ-free (GF) females was reversed by bacterial recolonization or supplementation of riboflavin, a precursor of FAD and FMN. Metabolomics analysis of GF females revealed a decrease in oxidative phosphorylation and FAD levels and an increase in metabolites that are degraded by FAD-dependent enzymes (e.g., amino and fatty acids). Riboflavin supplementation opposed this effect, elevating mitochondrial function, ATP, and oogenesis. These findings uncover a bacterial-mitochondrial axis of influence, linking gut bacteria with systemic regulation of host energy and reproduction.


Assuntos
Coenzimas/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal , Mitocôndrias/metabolismo , Oogênese , Folículo Ovariano/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Drosophila melanogaster/genética , Feminino , Fertilidade , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Regulação da Expressão Gênica , Vida Livre de Germes , Interações entre Hospedeiro e Microrganismos , Metaboloma , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Ovário/metabolismo
12.
Nat Cancer ; 1(9): 894-908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-35121952

RESUMO

Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.


Assuntos
Argininossuccinato Sintase , Neoplasias da Mama , Animais , Argininossuccinato Sintase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Purinas
13.
Oncogene ; 39(1): 164-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462712

RESUMO

Citrin, encoded by SLC25A13 gene, is an inner mitochondrial transporter that is part of the malate-aspartate shuttle, which regulates the NAD+/NADH ratio between the cytosol and mitochondria. Citrullinemia type II (CTLN-II) is an inherited disorder caused by germline mutations in SLC25A13, manifesting clinically in growth failure that can be alleviated by dietary restriction of carbohydrates. The association of citrin with glycolysis and NAD+/NADH ratio led us to hypothesize that it may play a role in carcinogenesis. Indeed, we find that citrin is upregulated in multiple cancer types and is essential for supplementing NAD+ for glycolysis and NADH for oxidative phosphorylation. Consequently, citrin deficiency associates with autophagy, whereas its overexpression in cancer cells increases energy production and cancer invasion. Furthermore, based on the human deleterious mutations in citrin, we found a potential inhibitor of citrin that restricts cancerous phenotypes in cells. Collectively, our findings suggest that targeting citrin may be of benefit for cancer therapy.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Neoplasias/genética , Carboidratos/genética , Citrulinemia/genética , Citrulinemia/metabolismo , Citosol/metabolismo , Citosol/patologia , Regulação Neoplásica da Expressão Gênica/genética , Mutação em Linhagem Germinativa/genética , Glutamatos/farmacologia , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/farmacologia , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos
14.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100185

RESUMO

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Assuntos
Genômica , Metabolômica , Neoplasias/patologia , Ureia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferase/antagonistas & inibidores , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/biossíntese , Pirimidinas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
15.
Nat Commun ; 7: 10654, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876023

RESUMO

Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops.


Assuntos
Alcaloides/biossíntese , Colesterol/biossíntese , Regulação da Expressão Gênica de Plantas , Ácido Mevalônico/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Terpenos/metabolismo , Fatores de Transcrição/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Hibridização In Situ , Solanum lycopersicum , Oxirredutases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum
16.
Proc Natl Acad Sci U S A ; 111(7): 2740-5, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550302

RESUMO

Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.


Assuntos
Aclimatação/fisiologia , Diatomáceas/metabolismo , Homeostase/fisiologia , Nitrogênio/metabolismo , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Cromatografia Líquida , Diatomáceas/fisiologia , Espectrometria de Massas , Oxirredução , Estresse Oxidativo/genética , Transdução de Sinais/fisiologia
17.
Plant Physiol ; 148(4): 2021-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18829985

RESUMO

In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the "distal" network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a much broader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model of how the balance in the metabolic network is maintained by the GS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the gene activities of the two clades. While it is very similar to the ATR1-like clade members in terms of downstream gene targets, its expression is highly correlated with that of the MYB28-like clade members. Finally, we used the unique transgenic plants obtained here to show that AGs are likely more potent deterrents of the whitefly Bemisia tabaci compared with IGs. The influence on insect behavior raises an important question for future investigation of the functional aspect of our initial finding, which pointed to enriched expression of the MYB28-like clade genes in the abaxial domain of the Arabidopsis leaf.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/biossíntese , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Expressão Gênica , Perfilação da Expressão Gênica , Glucosinolatos/química , Glucosinolatos/farmacologia , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , Histona Acetiltransferases , MicroRNAs/metabolismo , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oviposição/efeitos dos fármacos , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA