Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 977807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505046

RESUMO

The spontaneous action potential (AP) firing rate of sinoatrial nodal cells (SANC) is regulated by a system of intracellular Ca2+ and membrane ion current clocks driven by Ca2+-calmodulin-activated adenylyl cyclase-protein kinase-A signaling. The mean AP-cycle length (APCL) and APCL variability inform on the effectiveness of clock coupling. Endogenous ATP metabolite adenosine binds to adenosine receptors (A1, A3) that couple to Gi protein-coupled receptors, reducing spontaneous AP firing rate via Gßγ signaling that activates IKAch,Ado. Adenosine also inhibits adenylyl cyclase activity via Gαi signaling, impacting cAMP-mediated protein kinase-A-dependent protein phosphorylation. We hypothesize that in addition to IKAch,Ado activation, adenosine impacts also Ca2+ via Gαi signaling and that both effects reduce AP firing rate by reducing the effectiveness of the Ca2+ and membrane clock coupling. To this end, we measured Ca2+ and membrane potential characteristics in enzymatically isolated single rabbit SANC. 10 µM adenosine substantially increased both the mean APCL (on average by 43%, n = 10) and AP beat-to-beat variability from 5.1 ± 1.7% to 7.2 ± 2.0% (n = 10) measured via membrane potential and 5.0 ± 2.2% to 10.6 ± 5.9% (n = 40) measured via Ca2+ (assessed as the coefficient of variability = SD/mean). These effects were mediated by hyperpolarization of the maximum diastolic membrane potential (membrane clock effect) and suppression of diastolic local Ca2+releases (LCRs) (Ca2+-clock effect): as LCR size distributions shifted to smaller values, the time of LCR occurrence during diastolic depolarization (LCR period) became prolonged, and the ensemble LCR signal became reduced. The tight linear relationship of coupling between LCR period to the APCL in the presence of adenosine "drifted" upward and leftward, i.e. for a given LCR period, APCL was prolonged, becoming non-linear indicating clock uncoupling. An extreme case of uncoupling occurred at higher adenosine concentrations (>100 µM): small stochastic LCRs failed to self-organize and synchronize to the membrane clock, thus creating a failed attempt to generate an AP resulting in arrhythmia and cessation of AP firing. Thus, the effects of adenosine to activate Gßγ and IKACh,Ado and to activate Gαi, suppressing adenylyl cyclase activity, both contribute to the adenosine-induced increase in the mean APCL and APCL variability by reducing the fidelity of clock coupling and AP firing rate.

2.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831329

RESUMO

Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2-3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR's characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.


Assuntos
Relógios Biológicos , Fosfoproteínas Fosfatases/metabolismo , Nó Sinoatrial/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Relógios Biológicos/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Toxinas Marinhas/farmacologia , Modelos Biológicos , Oxazóis/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
3.
Sci Signal ; 11(534)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895616

RESUMO

The spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca2+ releases generated by a Ca2+ clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca2+-cAMP-protein kinase A (PKA) signaling regulated clock coupling. When these clocks became uncoupled, SANCs failed to generate spontaneous action potentials, showing a depolarized membrane potential and disorganized local Ca2+ releases that failed to activate the M clock. ß-Adrenergic receptor (ß-AR) stimulation, which increases cAMP concentrations and clock coupling in other species, restored spontaneous, rhythmic action potentials in some nonbeating "arrested" human SANCs by increasing intracellular Ca2+ concentrations and synchronizing diastolic local Ca2+ releases. When ß-AR stimulation was withdrawn, the clocks again became uncoupled, and SANCs reverted to a nonbeating arrested state. Thus, automaticity of human pacemaker cells is driven by a coupled-clock system driven by Ca2+-cAMP-PKA signaling. Extreme clock uncoupling led to failure of spontaneous action potential generation, which was restored by recoupling of the clocks. Clock coupling and action potential firing in some of these arrested cells can be restored by ß-AR stimulation-induced augmentation of Ca2+-cAMP-PKA signaling.


Assuntos
Potenciais de Ação , Relógios Biológicos , Cálcio/metabolismo , Coração/fisiologia , Receptores Adrenérgicos beta/metabolismo , Nó Sinoatrial/fisiologia , Sinalização do Cálcio , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Acoplamento Excitação-Contração , Humanos , Receptores Adrenérgicos beta/genética , Nó Sinoatrial/citologia
4.
J Pharmacol Sci ; 125(1): 6-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748434

RESUMO

Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age.


Assuntos
Relógios Biológicos/fisiologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Animais , Sinalização do Cálcio/fisiologia , AMP Cíclico/fisiologia , Humanos , Canais Iônicos/fisiologia , Mitocôndrias/fisiologia , Modelos Biológicos , Modelos Teóricos , Fosforilação , Proteínas/metabolismo
5.
J Mol Cell Cardiol ; 66: 106-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274954

RESUMO

Basal phosphorylation of sarcoplasmic reticulum (SR) Ca(2+) proteins is high in sinoatrial nodal cells (SANC), which generate partially synchronized, spontaneous, rhythmic, diastolic local Ca(2+) releases (LCRs), but low in ventricular myocytes (VM), which exhibit rare diastolic, stochastic SR-generated Ca(2+) sparks. We tested the hypothesis that in a physiologic Ca(2+) milieu, and independent of increased Ca(2+) influx, an increase in basal phosphorylation of SR Ca(2+) cycling proteins will convert stochastic Ca(2+) sparks into periodic, high-power Ca(2+) signals of the type that drives SANC normal automaticity. We measured phosphorylation of SR-associated proteins, phospholamban (PLB) and ryanodine receptors (RyR), and spontaneous local Ca(2+) release characteristics (LCR) in permeabilized single, rabbit VM in physiologic [Ca(2+)], prior to and during inhibition of protein phosphatase (PP) and phosphodiesterase (PDE), or addition of exogenous cAMP, or in the presence of an antibody (2D12), that specifically inhibits binding of the PLB to SERCA-2. In the absence of the aforementioned perturbations, VM could only generate stochastic local Ca(2+) releases of low power and low amplitude, as assessed by confocal Ca(2+) imaging and spectral analysis. When the kinetics of Ca(2+) pumping into the SR were increased by an increase in PLB phosphorylation (via PDE and PP inhibition or addition of cAMP) or by 2D12, self-organized, "clock-like" local Ca(2+) releases, partially synchronized in space and time (Ca(2+) wavelets), emerged, and the ensemble of these rhythmic local Ca(2+) wavelets generated a periodic high-amplitude Ca(2+) signal. Thus, a Ca(2+) clock is not specific to pacemaker cells, but can also be unleashed in VM when SR Ca(2+) cycling increases and spontaneous local Ca(2+) release becomes partially synchronized. This unleashed Ca(2+) clock that emerges in a physiological Ca(2+) milieu in VM has two faces, however: it can provoke ventricular arrhythmias; or if harnessed, can be an important feature of novel bio-pacemaker designs.


Assuntos
Relógios Biológicos/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anticorpos/farmacologia , Proteínas de Ligação ao Cálcio/genética , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/citologia , Marca-Passo Artificial , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo
6.
J Mol Cell Cardiol ; 51(5): 730-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21840316

RESUMO

Recent perspectives on sinoatrial nodal cell (SANC)(*) function indicate that spontaneous sarcoplasmic reticulum (SR) Ca(2+) cycling, i.e. an intracellular "Ca(2+) clock," driven by cAMP-mediated, PKA-dependent phosphorylation, interacts with an ensemble of surface membrane electrogenic molecules ("surface membrane clock") to drive SANC normal automaticity. The role of AC-cAMP-PKA-Ca(2+) signaling cascade in mouse, the species most often utilized for genetic manipulations, however, has not been systematically tested. Here we show that Ca(2+) cycling proteins (e.g. RyR2, NCX1, and SERCA2) are abundantly expressed in mouse SAN and that spontaneous, rhythmic SR generated local Ca(2+) releases (LCRs) occur in skinned mouse SANC, clamped at constant physiologic [Ca(2+)]. Mouse SANC also exhibits a high basal level of phospholamban (PLB) phosphorylation at the PKA-dependent site, Serine16. Inhibition of intrinsic PKA activity or inhibition of PDE in SANC, respectively: reduces or increases PLB phosphorylation, and markedly prolongs or reduces the LCR period; and markedly reduces or accelerates SAN spontaneous firing rate. Additionally, the increase in AP firing rate by PKA-dependent phosphorylation by ß-adrenergic receptor (ß-AR) stimulation requires normal intracellular Ca(2+) cycling, because the ß-AR chronotropic effect is markedly blunted when SR Ca(2+) cycling is disrupted. Thus, AC-cAMP-PKA-Ca(2+) signaling cascade is a major mechanism of normal automaticity in mouse SANC.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Frequência Cardíaca/fisiologia , Nó Sinoatrial/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Periodicidade , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/citologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/fisiologia , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
7.
J Mol Cell Cardiol ; 50(1): 66-76, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20920509

RESUMO

There is an intense interest in differentiating embryonic stem cells to engineer biological pacemakers as an alternative to electronic pacemakers for patients with cardiac pacemaker function deficiency. Embryonic stem cell-derived cardiocytes (ESCs), however, often exhibit dysrhythmic excitations. Using Ca(2+) imaging and patch-clamp techniques, we studied requirements for generation of spontaneous rhythmic action potentials (APs) in late-stage mouse ESCs. Sarcoplasmic reticulum (SR) of ESCs generates spontaneous, rhythmic, wavelet-like Local Ca(2+)Releases (LCRs) (inhibited by ryanodine, tetracaine, or thapsigargin). L-type Ca(2+)current (I(CaL)) induces a global Ca(2+) release (CICR), depleting the Ca(2+) content SR which resets the phases of LCR oscillators. Following a delay, SR then generates a highly synchronized spontaneous Ca(2+)release of multiple LCRs throughout the cell. The LCRs generate an inward Na(+)/Ca(2+)exchanger (NCX) current (absent in Na(+)-free solution) that ignites the next AP. Interfering with SR Ca(2+) cycling (ryanodine, caffeine, thapsigargin, cyclopiazonic acid, BAPTA-AM), NCX (Na(+)-free solution), or I(CaL) (nifedipine) results in dysrhythmic excitations or cessation of automaticity. Inhibition of cAMP/PKA signaling by a specific PKA inhibitor, PKI, decreases SR Ca(2+) loading, substantially reducing both spontaneous LCRs (number, size, and amplitude) and rhythmic AP firing. In contrast, enhancing PKA signaling by cAMP increases the LCRs (number, size, duration) and converts irregularly beating ESCs to rhythmic "pacemaker-like" cells. SR Ca(2+) loading and LCR activity could be also increased with a selective activation of SR Ca(2+) pumping by a phospholamban antibody. We conclude that SR Ca(2+) loading and spontaneous rhythmic LCRs are driven by inherent cAMP/PKA activity. I(CaL) synchronizes multiple LCR oscillators resulting in strong, partially synchronized diastolic Ca(2+) release and NCX current. Rhythmic ESC automaticity can be achieved by boosting "coupling" factors, such as cAMP/PKA signaling, that enhance interactions between SR and sarcolemma.


Assuntos
Eletrofisiologia/métodos , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/metabolismo , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos , Sinalização do Cálcio/fisiologia , AMP Cíclico/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Periodicidade , Retículo Sarcoplasmático/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 297(3): H949-59, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542482

RESUMO

Prior studies indicate that cholinergic receptor (ChR) activation is linked to beating rate reduction (BRR) in sinoatrial nodal cells (SANC) via 1) a G(i)-coupled reduction in adenylyl cyclase (AC) activity, leading to a reduction of cAMP or protein kinase A (PKA) modulation of hyperpolarization-activated current (I(f)) or L-type Ca(2+) currents (I(Ca,L)), respectively; and 2) direct G(i)-coupled activation of ACh-activated potassium current (I(KACh)). More recent studies, however, have indicated that Ca(2+) cycling by the sarcoplasmic reticulum within SANC (referred to as a Ca(2+) clock) generates rhythmic, spontaneous local Ca(2+) releases (LCR) that are AC-PKA dependent. LCRs activate Na(+)-Ca(2+) exchange (NCX) current, which ignites the surface membrane ion channels to effect an AP. The purpose of the present study was to determine how ChR signaling initiated by a cholinergic agonist, carbachol (CCh), affects AC, cAMP, and PKA or sarcolemmal ion channels and LCRs and how these effects become integrated to generate the net response to a given intensity of ChR stimulation in single, isolated rabbit SANC. The threshold CCh concentration ([CCh]) for BRR was approximately 10 nM, half maximal inhibition (IC(50)) was achieved at 100 nM, and 1,000 nM stopped spontaneous beating. G(i) inhibition by pertussis toxin blocked all CCh effects on BRR. Using specific ion channel blockers, we established that I(f) blockade did not affect BRR at any [CCh] and that I(KACh) activation, evidenced by hyperpolarization, first became apparent at [CCh] > 30 nM. At IC(50), CCh reduced cAMP and reduced PKA-dependent phospholamban (PLB) phosphorylation by approximately 50%. The dose response of BRR to CCh in the presence of I(KACh) blockade by a specific inhibitor, tertiapin Q, mirrored that of CCh to reduced PLB phosphorylation. At IC(50), CCh caused a time-dependent reduction in the number and size of LCRs and a time dependent increase in LCR period that paralleled coincident BRR. The phosphatase inhibitor calyculin A reversed the effect of IC(50) CCh on SANC LCRs and BRR. Numerical model simulations demonstrated that Ca(2+) cycling is integrated into the cholinergic modulation of BRR via LCR-induced activation of NCX current, providing theoretical support for the experimental findings. Thus ChR stimulation-induced BRR is entirely dependent on G(i) activation and the extent of G(i) coupling to Ca(2+) cycling via PKA signaling or to I(KACh): at low [CCh], I(KACh) activation is not evident and BRR is attributable to a suppression of cAMP-mediated, PKA-dependent Ca(2+) signaling; as [CCh] increases beyond 30 nM, a tight coupling between suppression of PKA-dependent Ca(2+) signaling and I(KACh) activation underlies a more pronounced BRR.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Colinérgicos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Atropina/farmacologia , Venenos de Abelha/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Césio/farmacologia , Cloretos/farmacologia , Agonistas Colinérgicos/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Parassimpatolíticos/farmacologia , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Nó Sinoatrial/citologia , Processos Estocásticos
9.
Am J Physiol Heart Circ Physiol ; 296(3): H594-615, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19136600

RESUMO

Recent experimental studies have demonstrated that sinoatrial node cells (SANC) generate spontaneous, rhythmic, local subsarcolemmal Ca(2+) releases (Ca(2+) clock), which occur during late diastolic depolarization (DD) and interact with the classic sarcolemmal voltage oscillator (membrane clock) by activating Na(+)-Ca(2+) exchanger current (I(NCX)). This and other interactions between clocks, however, are not captured by existing essentially membrane-delimited cardiac pacemaker cell numerical models. Using wide-scale parametric analysis of classic formulations of membrane clock and Ca(2+) cycling, we have constructed and initially explored a prototype rabbit SANC model featuring both clocks. Our coupled oscillator system exhibits greater robustness and flexibility than membrane clock operating alone. Rhythmic spontaneous Ca(2+) releases of sarcoplasmic reticulum (SR)-based Ca(2+) clock ignite rhythmic action potentials via late DD I(NCX) over much broader ranges of membrane clock parameters [e.g., L-type Ca(2+) current (I(CaL)) and/or hyperpolarization-activated ("funny") current (I(f)) conductances]. The system Ca(2+) clock includes SR and sarcolemmal Ca(2+) fluxes, which optimize cell Ca(2+) balance to increase amplitudes of both SR Ca(2+) release and late DD I(NCX) as SR Ca(2+) pumping rate increases, resulting in a broad pacemaker rate modulation (1.8-4.6 Hz). In contrast, the rate modulation range via membrane clock parameters is substantially smaller when Ca(2+) clock is unchanged or lacking. When Ca(2+) clock is disabled, the system parametric space for fail-safe SANC operation considerably shrinks: without rhythmic late DD I(NCX) ignition signals membrane clock substantially slows, becomes dysrhythmic, or halts. In conclusion, the Ca(2+) clock is a new critical dimension in SANC function. A synergism of the coupled function of Ca(2+) and membrane clocks confers fail-safe SANC operation at greatly varying rates.


Assuntos
Relógios Biológicos , Sinalização do Cálcio , Simulação por Computador , Frequência Cardíaca , Modelos Cardiovasculares , Sarcolema/metabolismo , Nó Sinoatrial/metabolismo , Potenciais de Ação , Animais , Relógios Biológicos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/antagonistas & inibidores , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Cinética , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Oscilometria , Coelhos , Reprodutibilidade dos Testes , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/enzimologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/enzimologia , Trocador de Sódio e Cálcio/metabolismo
10.
Ann N Y Acad Sci ; 1123: 41-57, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18375576

RESUMO

Earlier studies of the initiating event of normal automaticity of the heart's pacemaker cells, inspired by classical quantitative membrane theory, focused upon ion currents (IK, I f) that determine the maximum diastolic potential and the early phase of the spontaneous diastolic depolarization (DD). These early DD events are caused by the prior action potential (AP) and essentially reflect a membrane recovery process. Events following the recovery process that ignite APs have not been recognized and remained a mystery until recently. These critical events are linked to rhythmic intracellular signals initiated by Ca2+ clock (i.e., sarcoplasmic reticulum [SR] cycling Ca2+). Sinoatrial cells, regardless of size, exhibit intense ryanodine receptor (RyR), Na+/Ca2+ exchange (NCX)-1, and SR Ca2+ ATPase-2 immunolabeling and dense submembrane NCX/RyR colocalization; Ca2+ clocks generate spontaneous stochastic but roughly periodic local subsarcolemmal Ca2+ releases (LCR). LCRs generate inward currents via NCX that exponentially accelerate the late DD. The timing and amplitude of LCR/I NCX-coupled events control the timing and amplitude of the nonlinear terminal DD and therefore ultimately control the chronotropic state by determining the timing of the I CaL activation that initiates the next AP. LCR period is precisely controlled by the kinetics of SR Ca2+ cycling, which, in turn, are regulated by 1) the status of protein kinase A-dependent phosphorylation of SR Ca2+ cycling proteins; and 2) membrane ion channels ensuring the Ca2+ homeostasis and therefore the Ca2+ available to Ca2+ clock. Thus, the link between early DD and next AP, missed in earlier studies, is ensured by a precisely physiologically regulated Ca2+ clock within pacemaker cells that integrates multiple Ca2+-dependent functions and rhythmically ignites APs during late DD via LCRs-I NCX coupling.


Assuntos
Relógios Biológicos/fisiologia , Frequência Cardíaca/fisiologia , Coração/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Canais Iônicos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Nó Sinoatrial/fisiologia , Trocador de Sódio e Cálcio/fisiologia
11.
Cardiovasc Res ; 77(2): 274-84, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18006441

RESUMO

For almost half a century it has been thought that the initiation of each heartbeat is driven by surface membrane voltage-gated ion channels (M clocks) within sinoatrial nodal cells. It has also been assumed that pacemaker cell automaticity is initiated at the maximum diastolic potential (MDP). Recent experimental evidence based on confocal cell imaging and supported by numerical modelling, however, shows that initiation of cardiac impulse is a more complex phenomenon and involves yet another clock that resides under the sarcolemma. This clock is the sarcoplasmic reticulum (SR): it generates spontaneous, but precisely timed, rhythmic, submembrane, local Ca(2+) releases (LCR) that appear not at the MDP but during the late, diastolic depolarization (DD). The Ca(2+) clock and M clock dynamically interact, defining a novel paradigm of robust cardiac pacemaker function and regulation. Rhythmic LCRs during the late DD activate inward Na(+)/Ca(2+) exchanger currents and ignite action potentials, which in turn induceCa(2+) transients and SR depletions, resetting the Ca(2+) clock. Both basal and reserve protein kinaseA-dependent phosphorylation of Ca(2+) cycling proteins control the speed and amplitude of SR Ca(2+) cycling to regulate the beating rate by strongly coupled Ca(2+) and M clocks.


Assuntos
Cálcio/metabolismo , Canais Iônicos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação , Animais , AMP Cíclico/fisiologia , Diástole , Humanos , Retículo Sarcoplasmático/fisiologia , Trocador de Sódio e Cálcio/fisiologia
12.
Circ Res ; 98(4): 505-14, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16424365

RESUMO

Local, rhythmic, subsarcolemmal Ca2+ releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na(+)-Ca2+ exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of beta-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca2+ cycling and beating rate is also present in vivo, as the regulation of beating rate by local beta-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca2+ cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca2+ balance and spontaneous SR Ca2+ cycling, ie, phospholamban and L-type Ca2+ channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na(+)-Ca2+ exchanger current and is crucial for both basal and reserve cardiac pacemaker function.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação , Animais , AMP Cíclico/fisiologia , Diástole/fisiologia , Fosforilação , Coelhos , Receptores Adrenérgicos beta/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia , Nó Sinoatrial/citologia , Trocador de Sódio e Cálcio/fisiologia
13.
Cardiovasc Res ; 69(1): 116-27, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16223473

RESUMO

OBJECTIVE: We reported an ultraslow late Na+ current (INaL) in ventricular cardiomyocytes of human hearts. INaL has been implicated in regulation of action potential duration in normal hearts and repolarization abnormalities in failing hearts. We have also identified sodium channel (NaCh) gating modes including bursts (BM) and late scattered openings (LSM) that together comprise INaL; however, the contribution of these gating modes to Na+ current (INa) remains unknown. In the present study, the late NaCh activity was recorded, analyzed, and modeled for heterologously expressed NaCh, Nav1.5, and for the native NaCh of ventricular mid-myocardial cardiomyocytes from normal and failing hearts. METHODS AND RESULTS: We found that LSM gating was significantly slower in failing compared to normal myocytes and Nav1.5 (tau=474+/-10 vs. 299+/-9, and 229+/-12 ms, m+/-SEM; P<0.05, n=5-6). Total burst length of BM decreased with depolarization and was larger in failing compared to normal myocytes and Nav1.5. A complete INa decay was then numerically approximated as composed of NaCh populations operating in three gating modes described by separate Markov kinetic schemes: transient mode (TM), LSM, and BM. The populations of NaCh operating in each gating mode were estimated as 79.8% for TM, 20% for LSM, and 0.2% for BM, yielding an apparent four-exponential INa decay at -30 mV (maximum INa) (tau i approximately 0.4, 4, 50, and 500 ms). Whole-cell recordings confirmed the existence of all four predicted components. The model also predicted voltage and temperature dependence of INaL as well as INaL increase and slower decay in failing hearts and acceleration by amiodarone. CONCLUSIONS: The early phase of Na+ current decay (<40 ms) involves all three NaCh gating modes, the intermediate phase (from 40 to 300 ms) is produced by BM+LSM, although the contribution of BM decreases with depolarization, and ultra-late decay (>300 ms) is determined solely by LSM. The concept of multi-mode composition for INaL provides a new rationale for INaL modulation by factors such as voltage, temperature, pharmacological agents, and pathological conditions.


Assuntos
Simulação por Computador , Insuficiência Cardíaca/metabolismo , Ativação do Canal Iônico , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Canais de Sódio/fisiologia , Trifosfato de Adenosina/antagonistas & inibidores , Amiodarona/farmacologia , Análise de Variância , Ventrículos do Coração , Humanos , Técnicas de Patch-Clamp
14.
J Biol Chem ; 280(13): 12474-85, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15671035

RESUMO

Voltage-gated Ca(v)1.2 channels are composed of the pore-forming alpha1C and auxiliary beta and alpha2delta subunits. Voltage-dependent conformational rearrangements of the alpha1C subunit C-tail have been implicated in Ca2+ signal transduction. In contrast, the alpha1C N-tail demonstrates limited voltage-gated mobility. We have asked whether these properties are critical for the channel function. Here we report that transient anchoring of the alpha1C subunit C-tail in the plasma membrane inhibits Ca2+-dependent and slow voltage-dependent inactivation. Both alpha2delta and beta subunits remain essential for the functional channel. In contrast, if alpha1C subunits with are expressed alpha2delta but in the absence of a beta subunit, plasma membrane anchoring of the alpha1C N terminus or its deletion inhibit both voltage- and Ca2+-dependent inactivation of the current. The following findings all corroborate the importance of the alpha1C N-tail/beta interaction: (i) co-expression of beta restores inactivation properties, (ii) release of the alpha1C N terminus inhibits the beta-deficient channel, and (iii) voltage-gated mobility of the alpha1C N-tail vis a vis the plasma membrane is increased in the beta-deficient (silent) channel. Together, these data argue that both the alpha1C N- and C-tails have important but different roles in the voltage- and Ca2+-dependent inactivation, as well as beta subunit modulation of the channel. The alpha1C N-tail may have a role in the channel trafficking and is a target of the beta subunit modulation. The beta subunit facilitates voltage gating by competing with the N-tail and constraining its voltage-dependent rearrangements. Thus, cross-talk between the alpha1C C and N termini, beta subunit, and the cytoplasmic pore region confers the multifactorial regulation of Ca(v)1.2 channels.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Potenciais da Membrana , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Eletrofisiologia , Transferência Ressonante de Energia de Fluorescência , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Humanos , Hidrólise , Íons , Modelos Biológicos , Neurônios/metabolismo , Peptídeos/química , Fenótipo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA