Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 54(34): 5306-14, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26267475

RESUMO

The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. Recent live cell imaging studies have revealed that interactions of GR with chromatin are highly dynamic, with average receptor residence times of only seconds. These findings were surprising because early kinetic studies found that GR-DNA interactions in vitro were much slower, having calculated residence times of minutes to hours. However, these latter analyses were conducted at a time when it was possible to work with only either partially purified holoreceptor or its purified but isolated DNA binding domain. Noting these limitations, we reexamined GR-DNA dissociation kinetics using a highly purified holoreceptor shown to be amenable to rigorous study. We first observe that GR-DNA interactions in vitro are not slow as previously thought but converge with in vivo behavior, having residence times of only seconds to tens of seconds. This rapid exchange is seen at six individual response elements and the multisite MMTV promoter used in live cell imaging. Second, GR dissociation rates are identical for all response elements. Thus, previously observed differences in receptor affinity toward these sequences are not due to differences in off rate but in on rate. Finally, dissociation kinetics are biphasic in character. A minimal kinetic model consistent with the data is that in which DNA-bound GR interconverts between states on a second time scale, with dissociation occurring via a multistep process. We speculate that receptor interconversion in this time frame can be recognized by the coregulatory proteins that interact with GR, leading to unique transcriptional responses.


Assuntos
DNA/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Fenômenos Biofísicos , DNA/química , DNA/genética , Pegada de DNA , Humanos , Técnicas In Vitro , Cinética , Vírus do Tumor Mamário do Camundongo/genética , Regiões Promotoras Genéticas , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos de Resposta
2.
Biophys Chem ; 172: 8-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23333595

RESUMO

Steroid receptors assemble at DNA response elements as dimers, resulting in coactivator recruitment and transcriptional activation. Our work has focused on dissecting the energetics associated with these events and quantitatively correlating the results with function. A recent finding is that different receptors dimerize with large differences in energetics. For example, estrogen receptor-α (ER-α) dimerizes with a ΔG=-12.0 kcal/mol under conditions in which the glucocorticoid receptor (GR) dimerizes with a ΔG≤-5.1 kcal/mol. To determine the molecular forces responsible for such differences, we created a GR/ER chimera, replacing the hormone-binding domain (HBD) of GR with that of ER-α. Cellular and biophysical analyses demonstrate that the chimera is functionally active. However, GR/ER dimerization energetics are intermediate between the parent proteins and coupled to a strong ionic linkage. Since the ER-α HBD is the primary contributor to dimerization, we suggest that GR residues constrain an ion-regulated HBD assembly reaction.


Assuntos
Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Cloreto de Sódio/farmacologia , Sítios de Ligação , Pegada de DNA , Humanos , Luciferases/metabolismo , Multimerização Proteica , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Elementos de Resposta/genética , Ativação Transcricional
3.
Biochemistry ; 50(37): 7868-80, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21793594

RESUMO

The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.


Assuntos
Adenosina Trifosfatases/química , Reparo do DNA , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Multimerização Proteica , Adenosina Trifosfatases/metabolismo , Reparo do DNA/fisiologia , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas MutL , Fosfatos/química , Fosfatos/metabolismo , Ligação Proteica/genética , Multimerização Proteica/genética
4.
J Mol Biol ; 411(3): 633-48, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21704638

RESUMO

Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a "closed" state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an "open" state that differs by an ∼160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cristalização , Cristalografia por Raios X , DNA Helicases/genética , Reparo do DNA , DNA Bacteriano/genética , DNA de Cadeia Simples , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nucleotídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína
5.
Biochemistry ; 44(28): 9645-56, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16008350

RESUMO

Terminase enzymes are responsible for "packaging" of viral DNA into a preformed procapsid. Bacteriophage lambda terminase is composed of two subunits, gpA and gpNu1, in a gpA(1).gpNu1(2) holoenzyme complex. The larger gpA subunit is responsible for preparation of viral DNA for packaging, and is central to the packaging motor complex. The smaller gpNu1 subunit is required for site-specific assembly of the packaging motor on viral DNA. Terminase assembly at the packaging initiation site is regulated by ATP binding and hydrolysis at the gpNu1 subunit. Characterization of the catalytic and structural interactions between the DNA and nucleotide binding sites of gpNu1 is thus central to our understanding of the packaging motor at the molecular level. The high-resolution structure of the DNA binding domain of gpNu1 (gpNu1-DBD) was recently determined in our lab [de Beer, T., et al. (2002) Mol. Cell 9, 981-991]. The structure reveals the presence of a winged-helix-turn-helix DNA binding motif, but the location of the ATPase catalytic site in gpNu1 remains unknown. In this work, nucleotide binding to the gpNu1-DBD was probed using acrylamide fluorescence quenching and fluorescence-monitored ligand binding studies. The data indicate that the minimal DBD dimer binds both ATP and ADP at two equivalent but highly cooperative binding sites. The data further suggest that ATP and ADP induce distinct conformations of the dimer but do not affect DNA binding affinity. The implications of these results with respect to the assembly and function of a terminase DNA-packaging motor are discussed.


Assuntos
Bacteriófago lambda/enzimologia , Endodesoxirribonucleases/química , Proteínas Motores Moleculares/química , Subunidades Proteicas/química , Proteínas Virais/química , Montagem de Vírus/genética , Acrilamida/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Azidas/química , Azidas/metabolismo , Bacteriófago lambda/genética , Ligação Competitiva , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Genoma Viral , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Marcadores de Fotoafinidade/metabolismo , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Deleção de Sequência , Espectrometria de Fluorescência , Triptofano/química , Triptofano/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
J Mol Biol ; 347(3): 523-42, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15755448

RESUMO

Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.


Assuntos
Bacteriófago lambda/enzimologia , Empacotamento do DNA , Endodesoxirribonucleases/química , Holoenzimas/química , Proteínas Motores Moleculares/química , Adenosina Trifosfatases/metabolismo , Bacteriófago lambda/genética , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Holoenzimas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Genéticos , Proteínas Motores Moleculares/metabolismo , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
J Mol Biol ; 344(5): 1287-309, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15561144

RESUMO

Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. Using stopped-flow methods we have examined the kinetic mechanism of translocation of UvrD monomers along single-stranded DNA (ssDNA) in vitro by monitoring the transient kinetics of arrival of protein at the 5'-end of the ssDNA. Arrival at the 5'-end was monitored by the effect of protein on the fluorescence intensity of fluorophores (Cy3 or fluorescein) attached to the 5'-end of a series of oligodeoxythymidylates varying in length from 16 to 124 nt. We find that UvrD monomers are capable of ATP-dependent translocation along ssDNA with a biased 3' to 5' directionality. Global non-linear least-squares analysis of the full kinetic time-courses in the presence of a protein trap to prevent rebinding of free protein to the DNA using the methods described in the accompanying paper enabled us to obtain quantitative estimates of the kinetic parameters for translocation. We find that UvrD monomers translocate in discrete steps with an average kinetic step-size, m=3.68(+/-0.03) nt step(-1), a translocation rate constant, kt=51.3(+/-0.6) steps s(-1), (macroscopic translocation rate, mkt=189.0(+/-0.7) nt s(-1)), with a processivity corresponding to an average translocation distance of 2400(+/-600) nt before dissociation (10 mM Tris-HCl (pH 8.3), 20 mM NaCl, 20% (v/v) glycerol, 25 degrees C). However, in spite of its ability to translocate rapidly and efficiently along ssDNA, a UvrD monomer is unable to unwind even an 18 bp duplex in vitro. DNA helicase activity in vitro requires a UvrD dimer that unwinds DNA with a similar kinetic step-size of 4-5 bp step(-1), but an approximately threefold slower unwinding rate of 68(+/-9) bp s(-1) under the same solution conditions, indicating that DNA unwinding activity requires more than the ability to simply translocate directionally along ss-DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Movimento , Carbocianinas , Catálise , DNA de Cadeia Simples/química , Proteínas de Escherichia coli , Fluoresceína , Heparina/farmacologia , Cinética , Estrutura Molecular , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Fatores de Tempo
8.
J Biol Chem ; 278(34): 31930-40, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12788954

RESUMO

Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Sequência de Bases , Primers do DNA , Dimerização , Proteínas de Escherichia coli , Cinética
9.
J Mol Biol ; 325(5): 889-912, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12527298

RESUMO

The Escherichia coli UvrD protein (helicase II) is an SF1 superfamily helicase required for methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized quantitatively the self-assembly equilibria of the UvrD protein as a function of [NaCl], [glycerol], and temperature (5-35 degrees C; pH 8.3) using analytical sedimentation velocity and equilibrium techniques, and find that UvrD self-associates into dimeric and tetrameric species over a range of solution conditions (t

Assuntos
Adenosina Trifosfatases/química , DNA Helicases/química , DNA Bacteriano/química , Escherichia coli/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/farmacologia , DNA Helicases/genética , DNA Helicases/isolamento & purificação , Primers do DNA , DNA de Cadeia Simples/química , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli , Glicerol/farmacologia , Magnésio/farmacologia , Matemática , Ligação Proteica , Cloreto de Sódio/farmacologia , Temperatura , Ultracentrifugação
10.
J Mol Biol ; 325(5): 913-35, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12527299

RESUMO

The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths /=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas do Capsídeo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/farmacologia , Ligação Competitiva , Capsídeo/fisiologia , DNA/metabolismo , DNA Helicases/química , DNA Helicases/deficiência , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA de Cadeia Simples/metabolismo , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli , Técnicas In Vitro , Cinética , Matemática , Ligação Proteica , Temperatura , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA