Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 46(10): e14324, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35892210

RESUMO

Avenanthramides are phenolic compounds unique to oats and may contribute to health-promoting properties associated with oat consumption. This study used Xenopus laevis oocytes expressing the glucose transporters, glucose transporter 2 (GLUT2) or sodium-glucose transport protein 1 (SGLT1) and human Caco-2 cells models to investigate the effect of oat avenanthramides on human intestinal glucose transporters. The presence of avenanthramide reduced the glucose uptake in a dose-dependent manner in Caco-2 cells. Glucose uptake in oocytes expressing either GLUT2 or SGLT1 was nullified by oat avenanthramide. There was no significant difference between the inhibition potencies of avenanthramides C and B. Thus, our results suggest that avenanthramides may contribute to the antidiabetic properties of oats. PRACTICAL APPLICATIONS: The present research focus on the antidiabetic properties of avenanthramides, which are unique phenolic compounds found in oats. Inhibiting the activities of the glucose transport proteins expressed in the small intestine is a known strategy to improve the control of postprandial glucose level. We therefore examined the inhibitory effects of avenanthramides on two glucose transporters, glucose transporter 2 and sodium-glucose transport protein 1, predominantly found in the small intestine using the human small intestinal cell model Caco-2 cell line and by heterologously expressing these two transporters in the Xenopus laevis oocytes. Based on our results, we have confirmed for the first time that the glucose uptake is indeed inhibited by the presence of avenanthramides, suggesting the possibility of incorporating avenanthramides in foods to enhance postprandial glucose response, and ultimately improve the management of diabetes. Therefore, future research could consider utilizing this evidence in the development of diabetic-friendly functional foods or nutraceuticals containing avenanthramides.


Assuntos
Avena , Glucose , Avena/metabolismo , Células CACO-2 , Grão Comestível/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Humanos , Hipoglicemiantes/farmacologia , Fenóis , ortoaminobenzoatos
2.
Front Nutr ; 8: 634519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928110

RESUMO

Thermal processing not only disrupts cell membranes and cell walls, but also cleaves covalent bonds releasing low molecular phenolic. This study examined the impact of various heat treatments (100, 140, and 160°C) on the composition of phenolic acids and antioxidant activities in extracts obtained from defatted brewers spent grain (BSG) meal. Heating BSG at 160°C resulted in a 2-fold increase in total phenolic content [TPC, 172.98 ± 7.3 mg Gallic acid equivalent (GAE)/100 g defatted meal] and total flavonoid content [TFC, 16.15 ± 2.22 catechin equivalents (CE)/100 g defatted meal] compared to the untreated BSG extracts. The antioxidant activities of treated BSG extracts, determined by radical scavenging and ferric reducing antioxidant power (FRAP) were significantly (p < 0.5) higher than the corresponding untreated BSG extracts. Eleven phenolic acids were identified and quantified in BSG extracts by Ultra Performance Liquid Chromatography with Photodiode Array (UPLC-PDA). The amounts varied significantly (p < 0.05) depending on the degree of toasting BSG was subjected to. Chlorogenic acid, an ester of caffeic and quinic acid was the predominant phenolic acid present in all fractions. Significant (p < 0.05) increases in TPC, TFC, individual phenolic acids and antioxidant activity were observed in BSG extracts exposed to increasing oven temperatures. These results confirm the ability of heat processing to release bioactive phenolic from their bound forms thereby enhancing the phenolic acids and the digestibility of BSG meal in the intestinal tract.

3.
Food Chem ; 167: 311-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25148993

RESUMO

The effect of xylanase type (Trichoderma viride or Neocallimastix patriciarum) and graded ethanol fractionation on the antioxidant capacity (AOC) of arabinoxylan oligosaccharides (AXOS) obtained from wheat aleurone was investigated. AXOS yields were higher using N. patriciarum (62%) than T. viride (44%). The fraction (F100) collected at >80% ethanol concentration constituted 60% of total recovered AXOS. Degree of substitution ranged from 0.20 to 0.60 for ethanol graded fractions. Ferulic acid (FA) esterified to AXOS (8.0 µg/ mg) was 2-fold lower for the N. patriciarum treatment. The mean AOC (41.6, 183.1, and 394.9 µM TE/mg) of T. viride treated AXOS was >1.4-fold higher than N. patriciarum treatment using DPPH and ABTS and ORAC assays, respectively. Fraction F100 had highest AOC. AOC was influenced by the content of esterified FA (R(2)=0.94). The type of xylanase had a major influence on the AOC of the resultant AXOS rich in FA content.


Assuntos
Ácidos Cumáricos/química , Trichoderma/química , Triticum/química , Xilanos/química , Antioxidantes/química , Oligossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA