Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(11): 3773-3786, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37635172

RESUMO

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Feminino , Animais , Carcinoma Epitelial do Ovário/terapia , Neoplasias Ovarianas/terapia , Antígenos de Neoplasias , Linfócitos T , Proteínas WT1
2.
Immunol Rev ; 320(1): 58-82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455333

RESUMO

Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/terapia , Anticorpos
3.
Res Sq ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214945

RESUMO

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR-T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR-T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR-T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR-T cell therapy in epithelial ovarian cancer and other cancers.

4.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764348

RESUMO

The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.

5.
J Autoimmun ; 108: 102401, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31948790

RESUMO

The use of autoantigen-specific regulatory T cells (Tregs) as a cellular therapy for autoimmune diseases is appealing. However, it is challenging to isolate and expand large quantity of Tregs expressing disease-relevant T-cell receptors (TCR). To overcome this problem, we used an approach aiming at redirecting the specificity of polyclonal Tregs through autoreactive TCR gene transfer technology. In this study, we examined whether Tregs engineered through retroviral transduction to express a TCR cross-reactive to two CNS autoantigens, myelin oligodendrocyte glycoprotein (MOG) and neurofilament-medium (NF-M), had a superior protective efficacy compared with Tregs expressing a MOG mono-specific TCR. We observed that engineered Tregs (engTregs) exhibited in vitro regulatory effects related to the antigenic specificity of the introduced TCR, and commensurate in potency with the avidity of the transduced TCR. In experimental autoimmune encephalomyelitis (EAE), adoptively transferred engTregs proliferated, and migrated to the CNS, while retaining FoxP3 expression. EngTregs expressing MOG/NF-M cross-reactive TCR had superior protective properties over engTregs expressing MOG-specific TCR in MOG-induced EAE. Remarkably, MOG/NF-M bi-specific TCR-engTregs also improved recovery from EAE induced by an unrelated CNS autoantigen, proteolipid protein (PLP). This study underlines the benefit of using TCRs cross-reacting towards multiple autoantigens, compared with mono-reactive TCR, for the generation of engTregs affording protection from autoimmune disease in adoptive cell therapy.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/imunologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Camundongos , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA