Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Skin Res Technol ; 25(5): 662-671, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30932258

RESUMO

BACKGROUND: The increased incidence rate of skin cancers during the last decades is alarming. One of the significant difficulties in the histopathology of skin cancers is appearance variability due to the heterogeneity of diseases or tissue preparation and staining process. This study aims to investigate whether the high-resolution acoustic microscopy has the potential for identifying and quantitatively classifying skin cancers. MATERIAL/METHODS: Unstained standard formalin-fixed skin tissue samples were used for ultrasonic examination. The high-frequency acoustic microscope equipped with the 320 MHz transducer was utilized to visualize skin structure. Fourier transform was performed to calculate the sound speed and attenuation in the tissue. RESULTS: The acoustic images demonstrate good concordance with the traditional histology images. All histological features in the tumour were easily identifiable on acoustic images. Each skin cancer type has its combination of ultrasonic properties significantly different from the healthy skin. CONCLUSIONS: High-resolution acoustic imaging strengthened with quantitative analysis shows a potential to work as an auxiliary imaging modality assisting pathologists to lean to the particular decision in doubtful cases. The method can also assist surgeon to ensure the complete resection of a tumour.


Assuntos
Carcinoma Basocelular/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Melanoma/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Técnicas de Imagem por Elasticidade/métodos , Humanos , Melanoma/patologia , Microscopia Acústica/métodos , Neoplasias Cutâneas/patologia
2.
J Biomed Opt ; 24(4): 1-7, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31028693

RESUMO

Given that breast cancer is the second leading cause of cancer-related deaths among women in the United States, it is necessary to continue improving the sensitivity and specificity of breast imaging systems that diagnose breast lesions. Photoacoustic (PA) imaging can provide functional information during in vivo studies and can augment the structural information provided by ultrasound (US) imaging. A full-ring, all-reflective, illumination system for photoacoustic tomography (PAT) coupled to a full-ring US receiver is developed and tested. The US/PA tomography system utilizes a cone mirror and conical reflectors to optimize light delivery for PAT imaging and has the potential to image objects that are placed within the ring US transducer. The conical reflector used in this system distributes the laser energy over a circular cross-sectional area, thereby reducing the overall fluence. This, in turn, allows the operator to increase the laser energy achieving better cross-sectional penetration depth. A proof-of-concept design utilizing a single cone mirror and a parabolic reflector is used for imaging cylindrical phantoms with light-absorbing objects. For the given phantoms, it has been shown that there was no restriction in imaging a given targeted cross-sectional area irrespective of vertical depth, demonstrating the potential of mirror-based, ring-illuminated PAT system. In addition, the all-reflective ring illumination method shows a uniform PA signal across the scanned cross-sectional area.


Assuntos
Técnicas Fotoacústicas , Tomografia , Ultrassonografia Mamária , Desenho de Equipamento , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Tomografia/instrumentação , Tomografia/métodos , Transdutores , Ultrassonografia Mamária/instrumentação , Ultrassonografia Mamária/métodos
3.
J Acoust Soc Am ; 124(6): 3481-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19206777

RESUMO

This paper describes recent developments in the area of high-precision ultrasonic thermometry with the potential to provide on-site direct determination of radiation doses administered for cancer treatment. Conventional calorimeters used for this purpose measure radiation-induced heating in a water phantom at one point in space by means of immersed thermistors and are subject to various thermal disturbances due to Ohmic heating and interactions of the radiation with the sensor probes. By contrast, the method described here is based on a high-resolution ultrasonic system that determines the change of the speed of sound due to small temperature changes in an acoustic propagation path in the radiation-heated water, thereby avoiding such undesired thermal effects. The thermometer is able to measure tens of microkelvin changes in the water temperature averaged over the acoustic path of about 60 cm at room temperature, with root-mean-squared noise of about 5 microK. Both incandescent and ionizing radiation heating data are presented for analog and digital implementations of a laboratory prototype. This application of the ultrasonic technique opens up possibilities for a new approach to performing therapy-level radiation dosimetry for medical clinics and standards laboratories.


Assuntos
Neoplasias/radioterapia , Radiometria/instrumentação , Som , Termômetros , Ultrassom , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Imagens de Fantasmas , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA