Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(7): 1276-1301, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533987

RESUMO

Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress response programs that counteract the inherent toxicity of such aberrant signaling. Although inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of protein phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor-suppressive resistance. Significance: A therapy consisting of deliberate hyperactivation of oncogenic signaling combined with perturbation of the stress responses that result from this is very effective in animal models of colon cancer. Resistance to this therapy is associated with loss of oncogenic signaling and reduced oncogenic capacity, indicative of tumor-suppressive drug resistance.


Assuntos
Neoplasias do Colo , Proteína Fosfatase 2 , Transdução de Sinais , Humanos , Animais , Proteína Fosfatase 2/metabolismo , Camundongos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Replicação do DNA
2.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360994

RESUMO

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Endonucleases Flap/uso terapêutico , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/genética
3.
FEBS J ; 286(2): 322-341, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29323786

RESUMO

Protein misfolding within the endoplasmic reticulum (ER stress) can be a cause or consequence of pulmonary disease. Mutation of proteins restricted to the alveolar type II pneumocyte can lead to inherited forms of pulmonary fibrosis, but even sporadic cases of pulmonary fibrosis appear to be strongly associated with activation of the unfolded protein response and/or the integrated stress response. Inhalation of smoke can impair protein folding and may be an important cause of pulmonary ER stress. Similarly, tissue hypoxia can lead to impaired protein homeostasis (proteostasis). But the mechanisms linking smoke and hypoxia to ER stress are only partially understood. In this review, we will examine the role of ER stress in the pathogenesis of lung disease by focusing on fibrosis, smoke, and hypoxia.


Assuntos
Asfixia/fisiopatologia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/patologia , Hipóxia/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Fumar/fisiopatologia , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Humanos , Dobramento de Proteína
4.
J Biol Chem ; 288(11): 7606-7617, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23341460

RESUMO

Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Genes p53 , Proteína Supressora de Tumor p53/genética , Animais , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular , Drosophila melanogaster , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Plasmídeos/metabolismo , Biossíntese de Proteínas , Proteína Fosfatase 1/metabolismo , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo
5.
Diabetes Metab Res Rev ; 26(8): 611-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20922715

RESUMO

Endoplasmic reticulum (ER) stress is an integral part of life for all professional secretory cells, but it has been studied to greatest depth in the pancreatic ß-cell. This reflects both the crucial role played by ER stress in the pathogenesis of diabetes and also the exquisite vulnerability of these cells to ER dysfunction. The adaptive cellular response to ER stress, the unfolded protein response, comprises mechanisms to both regulate new protein translation and a transcriptional program to allow adaptation to the stress. The core of this response is a triad of stress-sensing proteins: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6. All three regulate portions of the transcriptional unfolded protein response, while PERK also attenuates protein synthesis during ER stress and IRE1 interacts directly with the c-Jun amino-terminal kinase stress kinase pathway. In this review we shall discuss these processes in detail, with emphasis given to their impact on diabetes and how recent findings indicate that ER stress may be responsible for the loss of ß-cell mass in the disease.


Assuntos
Fator 6 Ativador da Transcrição/fisiologia , Diabetes Mellitus/fisiopatologia , Retículo Endoplasmático/fisiologia , Endorribonucleases/fisiologia , Ilhotas Pancreáticas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Ligação a DNA/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Epífises/anormalidades , Epífises/fisiopatologia , Glicoproteínas/fisiologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Camundongos , Osteocondrodisplasias/fisiopatologia , Oxirredutases , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/fisiologia , Resposta a Proteínas não Dobradas
6.
J Cell Sci ; 123(Pt 17): 2892-900, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20682638

RESUMO

The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2alpha phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest.


Assuntos
Proteínas Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células , Quinase 1 do Ponto de Checagem , Dano ao DNA , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/fisiologia , Ativação Enzimática , Olho/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Estresse Fisiológico/genética , Fosfatases cdc25/metabolismo , eIF-2 Quinase/biossíntese , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
7.
Neuro Oncol ; 10(6): 946-57, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18650488

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas with poor prognosis and limited treatment options. Evidence for a role of epidermal growth factor receptor (EGFR) and receptor tyrosine kinase erbB2 in MPNSTs led us to systematically study these potential therapeutic targets in a larger tumor panel (n = 37). Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization analysis revealed increased EGFR dosage in 28% of MPNSTs. ERBB2 and three tumor suppressor genes (PTEN [phosphatase and tensin homolog deleted on chromosome 10], CDKN2A [cyclin-dependent kinase inhibitor 2A], and TP53 [tumor protein p53]) were frequently lost or reduced. Reduction of CDKN2A was linked to appearance of metastasis. Comparison of corresponding neurofibromas and MPNSTs revealed an increase in genetic lesions in MPNSTs. No somatic mutations were found within tyrosine-kinase-encoding exons of EGFR and ERBB2. However, at the protein level, expression of EGFR and erbB2 was frequently detected in MPNSTs. EGFR expression was significantly associated with increased EGFR gene dosage. The EGFR ligands transforming growth factor alpha and EGF were more strongly expressed in MPNSTs than in neurofibromas. The effects of the drugs erlotinib and trastuzumab, which target EGFR and erbB2, were determined on MPNST cell lines. In contrast to trastuzumab, erlotinib mediated dose-dependent inhibition of cell proliferation. EGF-induced EGFR phosphorylation was attenuated by erlotinib. Summarized, our data indicate that EGFR and erbB2 are potential targets in treatment of MPNST patients.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Neoplasias de Bainha Neural/genética , Receptor ErbB-2/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Dosagem de Genes , Genes p16 , Genes p53 , Humanos , Imuno-Histoquímica , Neoplasias de Bainha Neural/metabolismo , PTEN Fosfo-Hidrolase/genética , Polimorfismo Conformacional de Fita Simples , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Trastuzumab
8.
Neuro Oncol ; 9(3): 291-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17504929

RESUMO

A subset of glioblastomas (GBMs) carry gene amplifications on chromosomal segment 4q12. To characterize this amplicon in detail, we analyzed a set of 100 samples consisting of 65 GBMs, 10 WHO grade III astrocytomas, 12 oligodendrogliomas, and 13 glioma cell cultures. We applied multiplex ligation-dependent probe amplification to determine the gene dosage of PDGFRA, KIT, and KDR and the flanking genes USP46, RASL11B, LNX1, CHIC2, SEC3L1, and IGFBP7. The amplicon was highly variable in size and copy number and extended over a region of up to 5 Mb. Amplifications on 4q12 were observed in 15% of GBMs and 23% of GBM cell cultures but not in 22 other gliomas. We analyzed transcription and translation of some genes within this amplicon. Gene amplification generally correlated with high transcript levels but did not necessarily result in increased protein levels. However, we detected frequent expression of proteins encoded by PDGFRA, KIT, and KDR in GBMs and GBM cell cultures independent of the amplification status. Future treatment of GBM patients may include drugs targeting multiple kinases that are encoded by genes on chromosomal segment 4q12.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 4/genética , Amplificação de Genes , Glioblastoma/genética , Western Blotting , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA