Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasite ; 30: 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762942

RESUMO

Balancing process efficiency and adult sterile male biological quality is one of the challenges in the success of the sterile insect technique (SIT) against insect pest populations. For the SIT against mosquitoes, many stress factors need to be taken into consideration when producing sterile males that require high biological quality to remain competitive once released in the field. Pressures of mass rearing, sex sorting, irradiation treatments, packing, transport and release including handling procedures for each step, add to the overall stress budget of the sterile male post-release. Optimizing the irradiation step to achieve maximum sterility while keeping off-target somatic damage to a minimum can significantly improve male mating competitiveness. It is therefore worth examining various protocols that have been found to be effective in other insect species, such as dose fractionation. A fully sterilizing dose of 70 Gy was administered to Aedes aegypti males as one acute dose or fractionated into either two equal doses of 35 Gy, or one low dose of 10 Gy followed by a second dose of 60 Gy. The two doses were separated by either 1- or 2-day intervals. Longevity, flight ability, and mating competitiveness tests were performed to identify beneficial effects of the various treatments. Positive effects of fractionating dose were seen in terms of male longevity and mating competitiveness. Although applying split doses generally improved male quality parameters, the benefits may not outweigh the added labor in SIT programmes for the management of mosquito vectors.


Title: Fractionnement de la dose d'irradiation chez les moustiques Aedes aegypti adultes. Abstract: Équilibrer l'efficacité du processus et la qualité biologique des mâles adultes stériles est l'un des défis du succès de la technique des insectes stériles (TIS) contre les populations d'insectes nuisibles. Pour la TIS contre les moustiques, de nombreux facteurs de stress sont à prendre en compte lors de la production de mâles stériles qui nécessitent une haute qualité biologique pour rester compétitifs une fois relâchés au champ. Les pressions de l'élevage en masse, du triage par sexe, des traitements d'irradiation, de l'emballage, du transport et de la libération, y compris les procédures de manipulation pour chaque étape, s'ajoutent au budget de stress global du mâle stérile après la libération. L'optimisation de l'étape d'irradiation pour atteindre une stérilité maximale tout en minimisant les dommages somatiques hors cible peut améliorer considérablement la compétitivité de l'accouplement des mâles et il est donc important d'examiner divers protocoles qui se sont révélés efficaces chez d'autres espèces d'insectes, comme le fractionnement de dose. Une dose entièrement stérilisante de 70 Gy a été administrée aux mâles Aedes aegypti en une dose unique ou fractionnée en deux doses égales de 35 Gy, ou une faible dose de 10 Gy suivie d'une seconde dose de 60 Gy. Les deux doses étaient séparées par des intervalles de 1 ou 2 jours. Des tests de longévité, d'aptitude au vol et de compétitivité à l'accouplement ont été réalisés pour identifier les effets bénéfiques des différents traitements. Des effets positifs de la dose de fractionnement ont été observés en termes de longévité des mâles et de compétitivité à l'accouplement. Bien que l'application de doses fractionnées améliore généralement les paramètres de qualité des mâles, les avantages peuvent ne pas compenser le travail supplémentaire dans les programmes TIS pour la gestion des moustiques vecteurs.


Assuntos
Aedes , Animais , Masculino , Aedes/efeitos da radiação , Reprodução , Mosquitos Vetores , Insetos , Doses de Radiação , Comportamento Sexual Animal/efeitos da radiação , Controle de Mosquitos/métodos
2.
Front Bioeng Biotechnol ; 10: 942654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172019

RESUMO

The developmental stage of the mosquito is one of the main factors that affect its response to ionizing radiation. Irradiation of adults has been reported to have beneficial effects. However, the main challenge is to immobilize and compact a large number of adult male mosquitoes for homogenous irradiation with minimal deleterious effects on their quality. The present study investigates the use of nitrogen in the irradiation of adult Aedes albopictus and Ae. aegypti. Irradiation in nitrogen (N2) and in air after being treated with nitrogen (PreN2) were compared with irradiation in air at gamma radiation doses of 0, 55, 70, 90, 110, and 125 Gy. In both species, approximately 0% egg hatch rate was observed following doses above 55 Gy in air versus 70 Gy in PreN2 and 90 Gy in N2. Males irradiated at a high mosquito density showed similar egg hatch rates as those irradiated at a low density. Nitrogen treatments showed beneficial effects on the longevity of irradiated males for a given dose, revealing the radioprotective effect of anoxia. However, irradiation in N2 or PreN2 slightly reduced the male flight ability. Nitrogen treatment was found to be a reliable method for adult mosquito immobilization. Overall, our results demonstrated that nitrogen may be useful in adult Aedes mass irradiation. The best option seems to be PreN2 since it reduces the immobilization duration and requires a lower dose than that required in the N2 environment to achieve full sterility but with similar effects on male quality. However, further studies are necessary to develop standardized procedures including containers, time and pressure for flushing with nitrogen, immobilization duration considering mosquito species, age, and density.

3.
Front Bioeng Biotechnol ; 10: 833698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051578

RESUMO

The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.

4.
Sci Rep ; 12(1): 6242, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422488

RESUMO

Reproductive sterility is the basis of the sterile insect technique (SIT) and essential for its success in the field. Numerous factors that influence dose-response in insects have been identified. However, historically the radiation dose administered has been considered a constant. Efforts aiming to standardize protocols for mosquito irradiation found that, despite carefully controlling many variable factors, there was still an unknown element responsible for differences in expected sterility levels of insects irradiated with the same dose and handling protocols. Thus, together with previous inconclusive investigations, the question arose whether dose really equals dose in terms of biological response, no matter the rate at which the dose is administered. Interestingly, the dose rate effects studied in human nuclear medicine indicated that dose rate could alter dose-response in mammalian cells. Here, we conducted experiments to better understand the interaction of dose and dose rate to assess the effects in irradiated mosquitoes. Our findings suggest that not only does dose rate alter irradiation-induced effects, but that the interaction is not linear and may change with dose. We speculate that the recombination of reactive oxygen species (ROS) in treatments with moderate to high dose rates might minimize indirect radiation-induced effects in mosquitoes and decrease sterility levels, unless dose along with its direct effects is increased. Together with further studies to identify an optimum match of dose and dose rate, these results could assist in the development of improved methods for the production of high-quality sterile mosquitoes to enhance the efficiency of SIT programs.


Assuntos
Infertilidade , Animais , Humanos , Insetos , Mamíferos , Pupa/efeitos da radiação , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA