Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256052

RESUMO

Mechanical stress is known to fuel several hallmarks of cancer, ranging from genome instability to uncontrolled proliferation or invasion. Cancer cells are constantly challenged by mechanical stresses not only in the primary tumour but also during metastasis. However, this latter has seldom been studied with regards to mechanobiology, in particular resistance to anoikis, a cell death programme triggered by loss of cell adhesion. Here, we show in vitro that migrating breast cancer cells develop resistance to anoikis following their passage through microporous membranes mimicking confined migration (CM), a mechanical constriction that cancer cells encounter during metastasis. This CM-induced resistance was mediated by Inhibitory of Apoptosis Proteins, and sensitivity to anoikis could be restored after their inhibition using second mitochondria-derived activator of caspase (SMAC) mimetics. Anoikis-resistant mechanically stressed cancer cells displayed enhanced cell motility and evasion from natural killer cell-mediated immune surveillance, as well as a marked advantage to form lung metastatic lesions in mice. Our findings reveal that CM increases the metastatic potential of breast cancer cells.


Assuntos
Anoikis , Neoplasias da Mama , Animais , Anoikis/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais
2.
Cancers (Basel) ; 12(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023187

RESUMO

Glioblastoma (GBM) is one of the cancers with the worst prognosis, despite huge efforts to understand its unusual heterogeneity and aggressiveness. This is mainly due to glioblastoma stem cells (GSCs), which are also responsible for the frequent tumor recurrence following surgery, chemotherapy or radiotherapy. In this study, we investigate the expression pattern of the anti-apoptotic BCL-xL protein in several GBM cell lines and the role it might play in GSC-enriched tumorspheres. We report that several GBM cell lines have an increased BCL-xL expression in tumorspheres compared to differentiated cells. Moreover, by artificially modulating BCL-xL expression, we unravel a correlation between BCL-xL and tumorsphere size. In addition, BCL-xL upregulation appears to sensitize GBM tumorspheres to newly developed BH3 mimetics, opening promising therapeutic perspectives for treating GBM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA