Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8149-8163, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38442005

RESUMO

Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.


Assuntos
Capuzes de RNA , Vacinas , Animais , Camundongos , RNA Mensageiro/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Biossíntese de Proteínas , Metilação
2.
Acc Chem Res ; 56(20): 2814-2826, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782471

RESUMO

Messenger ribonucleic acid (mRNA) is the universal cellular instruction for ribosomes to produce proteins. Proteins are responsible for most of the functions of living organisms, and their abnormal structure or activity is the cause of many diseases. mRNA, which is expressed in the cytoplasm and, unlike DNA, does not need to be delivered into the nucleus, appears to be an ideal vehicle for pursuing the idea of gene therapy in which genetic information about proteins is introduced into an organism to exert a therapeutic effect. mRNA molecules of any sequence can be synthesized using the same set of reagents in a cell-free system via a process called in vitro transcription (IVT), which is very convenient for therapeutic applications. However, this does not mean that the path from the idea to the first mRNA-based therapeutic was short and easy. It took 30 years of trial and error in the search for solutions that eventually led to the first mRNA vaccines created in record time during the SARS-CoV-2 pandemic. One of the fundamental problems in the development of RNA-based therapeutics is the legendary instability of mRNA, due to the transient nature of this macromolecule. From the chemical point of view, mRNA is a linear biopolymer composed of four types of ribonucleic subunits ranging in length from a few hundred to hundreds of thousands of nucleotides, with unique structures at its ends: a 5'-cap at the 5'-end and a poly(A) tail at the 3'-end. Both are extremely important for the regulation of translation and mRNA durability. These elements are also convenient sites for sequence-independent labeling of mRNA to create probes for enzymatic assays and tracking of the fate of mRNA in cells and living organisms. Synthetic 5'-cap analogs have played an important role in the studies of mRNA metabolism, and some of them have also been shown to significantly improve the translational properties of mRNA or affect mRNA stability and reactogenicity. The most effective of these is used in clinical trials of mRNA-based anticancer vaccines. Interestingly, thanks to the knowledge gained from the biophysical studies of cap-related processes, even relatively large modifications such as fluorescent tags can be attached to the cap structure without significant effects on the biological properties of the mRNA, if properly designed cap analogs are used. This has been exploited in the development of molecular tools (fluorescently labeled mRNAs) to track these macromolecules in complex biological systems, including organisms. These tools are extremely valuable for better understanding of the cellular mechanisms involved in mRNA metabolism but also for designing therapeutic mRNAs with superior properties. Much less is known about the usefulness/utility of poly(A) tail modifications in the therapeutic context, but it is clear that chemical modifications of poly(A) can also affect biochemical properties of mRNA. This Account is devoted to chemical modifications of both the 5'- and 3'-ends of mRNA aimed at improving the biological properties of mRNA, without interfering with its translational function, and is based on the authors' more than 20 years of experience in this field.


Assuntos
COVID-19 , Biossíntese de Proteínas , Humanos , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , Ribossomos/metabolismo
3.
Chemistry ; 26(49): 11266-11275, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259329

RESUMO

In eukaryotes, mature mRNA is formed through modifications of precursor mRNA, one of which is 5' cap biosynthesis, involving RNA cap guanine-N7 methyltransferase (N7-MTase). N7-MTases are also encoded by some eukaryotic viruses and facilitate their replication. N7-MTase inhibitors have therapeutic potential, but their discovery is difficult because long RNA substrates are usually required for activity. Herein, we report a universal N7-MTase activity assay based on small-molecule fluorescent probes. We synthesized 12 fluorescent substrate analogues (GpppA and GpppG derivatives) varying in the dye type, dye attachment site, and linker length. GpppA labeled with pyrene at the 3'-O position of adenosine acted as an artificial substrate with the properties of a turn-off probe for all three tested N7-MTases (human, parasite, and viral). Using this compound, a N7-MTase inhibitor assay adaptable to high-throughput screening was developed and used to screen synthetic substrate analogues and a commercial library. Several inhibitors with nanomolar activities were identified.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Metiltransferases/antagonistas & inibidores , Capuzes de RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA