Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36228615

RESUMO

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Assuntos
Macrófagos , Doenças Neuroinflamatórias , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Microglia/metabolismo , Encéfalo
2.
Commun Biol ; 4(1): 781, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168276

RESUMO

Investigational in vitro models that reflect the complexity of the interaction between the immune system and tumours are limited and difficult to establish. Herein, we present a platform to study the tumour-immune interaction using a co-culture between cancer spheroids and activated immune cells. An algorithm was developed for analysis of confocal images of the co-culture to evaluate the following quantitatively; immune cell infiltration, spheroid roundness and spheroid growth. As a proof of concept, the effect of the glucocorticoid stress hormone, cortisol was tested on 66CL4 co-culture model. Results were comparable to 66CL4 syngeneic in vivo mouse model undergoing psychological stress. Furthermore, administration of glucocorticoid receptor antagonists demonstrated the use of this model to determine the effect of treatments on the immune-tumour interplay. In conclusion, we provide a method of quantifying the interaction between the immune system and cancer, which can become a screening tool in immunotherapy design.


Assuntos
Técnicas de Cocultura , Neoplasias de Mama Triplo Negativas/imunologia , Algoritmos , Animais , Linhagem Celular Tumoral , Feminino , Hidrocortisona/sangue , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Glucocorticoides/antagonistas & inibidores , Esferoides Celulares , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
3.
Br J Pharmacol ; 178(19): 3977-3996, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029379

RESUMO

People that develop extracranial cancers often display co-morbid neurological disorders, such as anxiety, depression and cognitive impairment, even before commencement of chemotherapy. This suggests bidirectional crosstalk between non-CNS tumours and the brain, which can regulate peripheral tumour growth. However, the reciprocal neurological effects of tumour progression on brain homeostasis are not well understood. Here, we review brain regions involved in regulating peripheral tumour development and how they, in turn, are adversely affected by advancing tumour burden. Tumour-induced activation of the immune system, blood-brain barrier breakdown and chronic neuroinflammation can lead to circadian rhythm dysfunction, sleep disturbances, aberrant glucocorticoid production, decreased hippocampal neurogenesis and dysregulation of neural network activity, resulting in depression and memory impairments. Given that cancer-related cognitive impairment diminishes patient quality of life, reduces adherence to chemotherapy and worsens cancer prognosis, it is essential that more research is focused at understanding how peripheral tumours affect brain homeostasis.


Assuntos
Neoplasias , Qualidade de Vida , Encéfalo , Cognição , Humanos , Transtornos do Humor , Neoplasias/complicações , Neoplasias/tratamento farmacológico
4.
Glia ; 68(1): 145-160, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433095

RESUMO

Astrocytes are important for information processing in the brain and they achieve this by fine-tuning neuronal communication via continuous uptake and release of biochemical modulators of neurotransmission and synaptic plasticity. Often overlooked are their important functions in mechanosensation. Indeed, astrocytes can detect pathophysiological changes in the mechanical properties of injured, ageing, or degenerating brain tissue. We have recently shown that astrocytes surrounding mechanically-stiff amyloid plaques upregulate the mechanosensitive ion channel, Piezo1. Moreover, ageing transgenic Alzheimer's rats harboring a chronic peripheral bacterial infection displayed enhanced Piezo1 expression in amyloid plaque-reactive astrocytes of the hippocampus and cerebral cortex. Here, we have shown that the bacterial endotoxin, lipopolysaccharide (LPS), also upregulates Piezo1 in primary mouse cortical astrocyte cultures in vitro. Activation of Piezo1, via the small molecule agonist Yoda1, enhanced Ca2+ influx in both control and LPS-stimulated astrocytes. Moreover, Yoda1 augmented intracellular Ca2+ oscillations but decreased subsequent Ca2+ influx in response to adenosine triphosphate (ATP) stimulation. Neither blocking nor activating Piezo1 affected cell viability. However, LPS-stimulated astrocyte cultures exposed to the Piezo1 activator, Yoda1, migrated significantly slower than reactive astrocytes treated with the mechanosensitive channel-blocking peptide, GsMTx4. Furthermore, our data show that activating Piezo1 channels inhibits the release of cytokines and chemokines, such as IL-1ß, TNFα, and fractalkine (CX3 CL1), from LPS-stimulated astrocyte cultures. Taken together, our results suggest that astrocytic Piezo1 upregulation may act to dampen neuroinflammation and could be a useful drug target for neuroinflammatory disorders of the brain.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Citocinas/metabolismo , Canais Iônicos/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA