Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(8): 2247-2254, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38380862

RESUMO

With the increasing emphasis on atmospheric environmental protection, it is crucial to find an efficient, direct, and accurate method to identify pollutant species in the atmosphere. To solve this problem, we designed and prepared the cascade multicavity (CMC) structure composed with silver nanoparticles (Ag NPs) as a surface-enhanced Raman scattering (SERS) substrate with favorable light transmittance and flexibility. The multicavity structure distributed on the surface introducing the homogeneous connecting holes endows the structure to more fully utilize the incident light while slowing the gas movement rate. Theoretical and experimental results have demonstrated that the Ag NPs/cascade multicavity (Ag-CMC) SERS substrate is a highly sensitive SERS substrate that can be used for in situ detection of gases under non-perpendicularly incident laser irradiation or bending of the substrate. We believe that the SERS substrate can provide a more efficient and feasible way for in situ detection of gaseous pollutants.

2.
Biosens Bioelectron ; 212: 114434, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671700

RESUMO

Microcystin-LR (MC-LR), a kind of hepatoxin produced by cyanobacteria blooms, can promote liver cancer through long-term exposure even at low concentrations. In this study, a novel biosensor based on surface-enhanced Raman scattering (SERS) and field effect transistor (FET) dual sensing mode was developed by using gold nanoparticles (AuNPs)/graphene composite as sensing material. Based on the SERS sensing mode, the Raman fingerprint spectrum of MC-LR was obtained through the specific combination of MC-LR aptamer and MC-LR. The SERS enhanced effect of the AuNPs was also verified by theoretical simulation. By using FET sensing mode, the graphene field effect transistor (G-FET) biosensor respectively exhibited the detection limit as low as 0.62 aM and 0.91 aM in phosphate buffered saline (PBS) and human serum, and showed a good linear relationship in a wide range of 1 × 10-18 to 1 × 10-8 M in both solutions. Meanwhile, the sensor was utilized for the detection of MC-LR in actual water samples, and the complex components in the water did not interfere with MC-LR detection, indicating a significant high specificity of the sensor. The SERS-FET dual-mode biosensor can provide more detection options and improve the reliability of measurement results, which may has a great application prospect in the field of water environment detection.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro , Humanos , Limite de Detecção , Toxinas Marinhas , Microcistinas , Reprodutibilidade dos Testes , Água
3.
Opt Express ; 28(7): 9174-9185, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225529

RESUMO

The weak plasmonic coupling intensity in an aluminum (Al) nanostructure has limited potential applications in excellent low-cost surface-enhanced Raman scattering (SERS) substrates and light harvesting. In this report, we aim to elevate the plasmonic coupling intensity by fabricating an Al nanoparticle (NP)-film system. In the system, the Al NP are fabricated directly on different Al film layers, and the nanoscale-thick alumina interlayer obtained between neighboring Al films acts as natural dielectric gaps. Interestingly, as the number of Al film layers increase, the plasmonic couplings generated between the Al NP and Al film increase as well. It is demonstrated that the confined gap plasmon modes stimulated in the nanoscale-thick alumina region between the adjacent Al films contribute significantly to elevating the plasmonic coupling intensity. The finite-difference time-domain (FDTD) method is used to carry out the simulations and verifies this result.

4.
Polymers (Basel) ; 12(2)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050477

RESUMO

This paper introduces a three-dimensional (3D) pyramid to the polymers-plasmonic hybrid structure of polymethyl methacrylate (PMMA) composite silver nanoparticle (AgNPs) as a higher quality flexible surface-enhanced Raman scattering (SERS) substrate. Benefiting from the effective oscillation of light inside the pyramid valley could provide wide distributions of 3D "hot spots" in a large space. The inclined surface design of the pyramid structure could facilitate the aggregation of probe molecules, which achieves highly sensitive detection of rhodamine 6G (R6G) and crystal violet (CV). In addition, the AgNPs and PMMA composite structures provide uniform space distribution for analyte detection in a designated hot spot zone. The incident light can penetrate the external PMMA film to trigger the localized plasmon resonance of the encapsulated AgNPs, achieving enormous enhancement factor (~ 6.24 × 10 8 ). After undergoes mechanical deformation, the flexible SERS substrate still maintains high mechanical stability, which was proved by experiment and theory. For practical applications, the prepared flexible SERS substrate is adapted to the in-situ Raman detection of adenosine aqueous solution and the methylene-blue (MB) molecule detection of the skin of a fish, providing a direct and nondestructive active-platform for the detecting on the surfaces with any arbitrary morphology and aqueous solution.

5.
Lasers Med Sci ; 34(9): 1849-1855, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30989458

RESUMO

Despite the rapid development of medical science, the diagnosis of lung cancer is still quite challenging. Due to the ultrahigh detection sensitivity of surface-enhanced Raman spectroscopy (SERS), SERS has a broad application prospect in biomedicine, especially in the field of tumor blood detection. Although Raman spectroscopy can diagnose lung cancer through tissue slices, its weak cross sections are problematic. In this study, silver nanoparticles (AgNPs) were added to the surface of lung tissue slices to enhance the Raman scattering signals of biomolecules. The electromagnetic field distribution of AgNPs prepared was simulated using the COMSOL software. SERS obtained from the slices reflected the difference in biochemical molecules between normal (n = 23) and cancerous (n = 23) lung tissues. Principal component-linear discriminate analysis (PCA-LDA) was utilized to classify lung cancer and healthy lung tissues. The receiver operating characteristic curve gave the sensitivity (95.7%) and specificity (95.7%) of the PCA-LDA method. This study sheds new light on the general applicability of SERS analysis of tissue slices in clinical trials.


Assuntos
Neoplasias Pulmonares/diagnóstico , Análise Espectral Raman/métodos , Estatística como Assunto , Adulto , Idoso , Feminino , Humanos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Pessoa de Meia-Idade , Análise Multivariada , Análise de Componente Principal , Prata/química , Coloração e Rotulagem
6.
Biomed Opt Express ; 9(9): 4345-4358, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615731

RESUMO

Surface-enhanced Raman scattering (SERS) has a broad application prospect in the field of tumor detection owing to its ultrahigh detective sensitivity. However, SERS analysis of serum remain a challenge in terms of repeatability and stability due to the maldistribution of the silver nanoparticles (Ag-NPs)-serum. With the aim to make up for this shortcoming, we report a new method for obtaining stable serum Raman signals utilizing the ordered arrays of pyramidal silicon (PSi) and Ag-NPs. We prove the practicability of this method by detecting the samples of serum from 50 lung cancer patients and 50 normal healthy people. Principal component analysis (PCA) of the serum SERS spectra shows that the spectral data of the two sample groups can form obvious and completely separated clusters. The receiver operating characteristic curve provides the sensitivity (100%) and specificity (90%) from the PCA-LDA method. This research indicates that a stable and label-free analysis technique of serum SERS based on Ag-NPs/PSi and PCA-LDA is promising for noninvasive lung cancer diagnoses.

7.
ACS Appl Mater Interfaces ; 7(20): 10977-87, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25941901

RESUMO

We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based on the G/CuNPs system, the ultrasensitive SERS detection of adenosine in varied matrices was expected for the practical applications in medicine and biotechnology.


Assuntos
Adenosina/análise , Cobre/química , Grafite/química , Nanopartículas Metálicas/química , Nanoconjugados/química , Análise Espectral Raman/métodos , Adenosina/química , Gases/química , Luz , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Nanoconjugados/ultraestrutura , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Coloração e Rotulagem
8.
Nanotechnology ; 25(16): 165702, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24671026

RESUMO

We demonstrate that continuous, uniform graphene films can be directly synthesized on quartz substrates using a two-temperature-zone chemical vapor deposition system and that their layers can be controlled by adjusting the precursor partial pressure. Raman spectroscopy and transmission electron microscopy confirm the formation of monolayer graphene with a grain size of ∼100 nm. Hall measurements show a room-temperature carrier mobility above 1500 cm2 V(-1) s(-1). The optical transmittance and conductance of the graphene films are comparable to those of transferred metal-catalyzed graphene. The method avoids the complicated and skilled post-growth transfer process and allows the graphene to be directly incorporated into a fully functional biosensor for label-free detection of adenosine triphosphate (ATP). This device shows a fast response time of a few milliseconds and achieves a high sensitivity to ATP molecules over a very wide range from 0.002 to 5 mM.


Assuntos
Trifosfato de Adenosina/química , Grafite/química , Quartzo/química , Técnicas Biossensoriais/métodos , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA