Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285246

RESUMO

Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design. We show that low SOX10 expression is linked to neural stem-cell (NSC)-like glioblastoma cell states and is a consequence of temozolomide treatment in animal and cell line models. Single-cell transcriptome profiling of Sox10-KD tumors indicates that Sox10 suppression is sufficient to induce tumor progression to an aggressive NSC/developmental-like phenotype, including a quiescent NSC-like cell population. The quiescent NSC state is induced by temozolomide and Sox10-KD and reduced by Notch pathway inhibition in cell line models. Combination treatment using Notch and HDAC/PI3K inhibitors extends the survival of mice carrying Sox10-KD tumors, validating our experimental therapy approach. In summary, SOX10 suppression mediates glioblastoma progression through NSC/developmental cell-state transition, including the induction of a targetable quiescent NSC state. This work provides a rationale for the design of tumor therapies based on single-cell phenotypic plasticity analysis.

2.
Neuro Oncol ; 26(2): 251-265, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37769206

RESUMO

BACKGROUND: Glioblastoma is the most common malignant brain tumor in adults. Cellular plasticity and the poorly differentiated features result in a fast relapse of the tumors following treatment. Moreover, the immunosuppressive microenvironment proved to be a major obstacle to immunotherapeutic approaches. Branched-chain amino acid transaminase 1 (BCAT1) was shown to drive the growth of glioblastoma and other cancers;however, its oncogenic mechanism remains poorly understood. METHODS: Using human tumor data, cell line models and orthotopic immuno-competent and -deficient mouse models, we investigated the phenotypic and mechanistic effects of BCAT1 on glioblastoma cell state and immunomodulation. RESULTS: Here, we show that BCAT1 is crucial for maintaining the poorly differentiated state of glioblastoma cells and that its low expression correlates with a more differentiated glioblastoma phenotype. Furthermore, orthotopic tumor injection into immunocompetent mice demonstrated that the brain microenvironment is sufficient to induce differentiation of Bcat1-KO tumors in vivo. We link the transition to a differentiated cell state to the increased activity of ten-eleven translocation demethylases and the hypomethylation and activation of neuronal differentiation genes. In addition, the knockout of Bcat1 attenuated immunosuppression, allowing for an extensive infiltration of CD8+ cytotoxic T-cells and complete abrogation of tumor growth. Further analysis in immunodeficient mice revealed that both tumor cell differentiation and immunomodulation following BCAT1-KO contribute to the long-term suppression of tumor growth. CONCLUSIONS: Our study unveils BCAT1's pivotal role in promoting glioblastoma growth by inhibiting tumor cell differentiation and sustaining an immunosuppressive milieu. These findings offer a novel therapeutic avenue for targeting glioblastoma through the inhibition of BCAT1.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Plasticidade Celular , Proliferação de Células , Terapia de Imunossupressão , Transaminases/genética , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Microambiente Tumoral
3.
Nat Commun ; 11(1): 6434, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339831

RESUMO

Glioblastoma frequently exhibits therapy-associated subtype transitions to mesenchymal phenotypes with adverse prognosis. Here, we perform multi-omic profiling of 60 glioblastoma primary tumours and use orthogonal analysis of chromatin and RNA-derived gene regulatory networks to identify 38 subtype master regulators, whose cell population-specific activities we further map in published single-cell RNA sequencing data. These analyses identify the oligodendrocyte precursor marker and chromatin modifier SOX10 as a master regulator in RTK I-subtype tumours. In vitro functional studies demonstrate that SOX10 loss causes a subtype switch analogous to the proneural-mesenchymal transition observed in patients at the transcriptomic, epigenetic and phenotypic levels. SOX10 repression in an in vivo syngeneic graft glioblastoma mouse model results in increased tumour invasion, immune cell infiltration and significantly reduced survival, reminiscent of progressive human glioblastoma. These results identify SOX10 as a bona fide master regulator of the RTK I subtype, with both tumour cell-intrinsic and microenvironmental effects.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Epigenoma , Glioblastoma/classificação , Glioblastoma/genética , Fatores de Transcrição SOXE/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mesoderma/patologia , Pessoa de Meia-Idade , Fenótipo , Reprodutibilidade dos Testes , Fatores de Transcrição SOXE/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA