Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Exp Neurol ; 368: 114507, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598880

RESUMO

Despite decades of intensive research, there are still very limited options for the effective treatment of intracerebral hemorrhage (ICH). Recently, mounting evidence has indicated that the ultra-early stage (<3 h), serving as the primary phase of ICH, plays a pivotal role and may even surpass other stages in terms of its significance. Therefore, uncovering the metabolic alterations induced by ICH in the ultra-early stage is of crucial importance. To investigate this, the collagenase ICH mouse model was employed in this study. ICH or sham-operated mice were euthanized at the ultra-early stage of 3 h and the acute stage of 24 h and 72 h after the operation. Then, the metabolic changes in the perihematomal tissues were detected by liquid chromatography coupled with tandem mass spectrometry. In total, alterations in the levels of 465 metabolites were detected. A total of 136 metabolites were significantly changed at 3 h. At 24 h and 72 h, the amounts were 132 and 126, respectively. Additionally, the key corresponding metabolic pathways for these time points were analyzed through KEGG. To gather additional information, quantitative real-time transcription polymerase chain reaction, enzyme-linked immunosorbent assay and Western blots were performed to validate the metabolic changes. Overall, ICH significantly alters important physiological functions such as cysteine metabolism, purine metabolism, synaptic alterations, the synaptic vesicle cycle, and the ATP-binding cassette transporter system. These might be the key pathologic mechanisms of the ultra-early stage induced by ICH.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Metabolômica , Animais , Camundongos , Hemorragia Cerebral , Cromatografia Líquida , Modelos Animais de Doenças
3.
Transl Stroke Res ; 14(6): 955-969, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36324028

RESUMO

Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Microglia/patologia , Hemorragia Subaracnóidea/patologia , Transdução de Sinais , Inflamação/metabolismo , Modelos Animais de Doenças
4.
Neural Regen Res ; 17(8): 1769-1775, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017437

RESUMO

Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion. Downregulation of microRNA (miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia. However, the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated. In this study, mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion. Agomir-455-5p, antagomir-455-5p, and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion (MCAO). The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood. Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue, reduced the cerebral infarct volume, and improved neurological function. Furthermore, primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion. miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels, inhibited microglia activation, and reduced the production of the inflammatory factors tumor necrosis factor-α and interleukin-1ß. These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response.

5.
Cell Transplant ; 28(6): 662-670, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520322

RESUMO

Stroke is the result of blockage or rupture of blood vessels in the brain and is the leading cause of death and disability in the world. Currently only a very limited number of therapeutic approaches are available for treatment of stroke patients, and the vast majority of neuroprotective agents that tested positively in pre-clinical studies failed in clinical trials. In recent years, the clinical value of the use of exosomes for stroke treatment has received widespread attention due their unique characteristics such as low immunogenicity, low toxicity and biodegradability, ability to cross the blood-brain barrier (BBB), and their important role in communication between cells. More and more evidence suggests that the secretion of exosomes is the mechanism underlying the protection induced by mesenchymal stromal cells (MSCs) after stroke. Exosomes are thought to support brain restoration and induce repairing effects, including neurovascular remodeling, and anti-apoptosis and anti-inflammatory effects. Recent reports have focused on the clinical application of exosomes as a potential drug delivery approach. This review focuses on the ability of exosomes to interrupt the stroke-induced pathologic processes of stroke, and on publications describing how to achieve more effective treatment of stroke with exosomes.


Assuntos
Exossomos/transplante , Transplante de Células-Tronco Mesenquimais , Acidente Vascular Cerebral/terapia , Animais , Comunicação Celular , Exossomos/metabolismo , Exossomos/patologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
6.
Exp Neurol ; 312: 72-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503192

RESUMO

Disruption of the blood-brain barrier results in the formation of edema and contributes to the loss of neurological function following intracerebral hemorrhage (ICH). This study examined insulin-like growth factor-1 (IGF-1) as a treatment and its mechanism of action for protecting the blood-brain barrier after ICH in mice. 171 Male CD-1 mice were subjected to ICH via collagenase or autologous blood. A dose study for recombinant human IGF-1 (rhIGF-1) was performed. Brain water content and behavioral deficits were evaluated at 24 and 72 h after the surgery, and Evans blue extravasation and hemoglobin assay were conducted at 24 h. Western blotting was performed for the mechanism study and interventions were used targeting the IGF-1R/GSK3ß/MEKK1 pathway. rhIGF-1 reduced edema and blood-brain barrier permeability, and improved neurobehavior outcomes. Western blots showed that rhIGF-1 reduced p-GSK3ß and MEKK1 expression, thereby increasing occludin and claudin-5 expression. Inhibition and knockdown of IGF-1R reversed the therapeutic benefits of rhIGF-1. The findings within suggest that stimulation of the IGF-1R is a therapeutic target for ICH which may lead to improved neurofunctional and blood-brain barrier protection.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Hemorragia Cerebral/metabolismo , Fator de Crescimento Insulin-Like I/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Injeções Intraventriculares , Masculino , Camundongos , RNA Interferente Pequeno/administração & dosagem , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo
7.
Sci Rep ; 7(1): 15583, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138419

RESUMO

Following intracerebral hemorrhage (ICH), the activation of mast cell contributes to brain inflammation and brain injury. The mast cell activation is negatively regulated by an inhibitory IgG-receptor. It's signals are mediated by SHIP (Src homology 2-containing inositol 5' phosphatase), in particular SHIP1, which activation leads to hydrolyzation of PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3, leading to the inhibition of calcium mobilization and to the attenuation of mast cell activation. Intravenous immunoglobulin (IVIG) is a FDA-approved drug containing IgG. We hypothesized that IVIG will attenuate the ICH-induced mast cell activation via FcγRIIB/SHIP1 pathway, resulting in a decrease of brain inflammation, protection of the blood-brain-barrier, and improvement of neurological functions after ICH. To prove this hypothesis we employed the ICH collagenase mouse model. We demonstrated that while ICH induced mast cell activation/degranulation, IVIG attenuated post-ICH mast cell activation. Mast cell deactivation resulted in reduced inflammation, consequently attenuating brain edema and improving of neurological functions after ICH. Furthermore using siRNA-induced in vivo knockdown approach we demonstrated that beneficial effects of IVIG were mediated, at least partly, via SHIP1/PIP3 pathway. We conclude that IVIG treatment represents a promising therapeutic approach potentially able to decrease mortality and morbidity after ICH in experimental models.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Colagenases/genética , Inflamação/tratamento farmacológico , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Receptores de IgG/genética , Administração Intravenosa , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cálcio/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Colagenases/imunologia , Modelos Animais de Doenças , Humanos , Imunoglobulina G/administração & dosagem , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , RNA Interferente Pequeno/genética , Receptores de IgG/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
J Neurochem ; 143(6): 750-760, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030969

RESUMO

Adropin is expressed in the CNS and plays a crucial role in the development of stroke. However, little is currently known about the effects of adropin on the blood-brain barrier (BBB) function after intracerebral hemorrhage (ICH). In this study, the role of adropin in collagenase-induced ICH was investigated in mice. At 1-h post-ICH, mice were administered with recombinant human adropin by intranasal. Brain water +content, BBB permeability, and neurological function were measured at different time intervals. Proteins were quantified using western blot analysis, and the localizations of adropin and Notch1 were visualized via immunofluorescence staining. It is shown that adropin reduced brain water content and improved neurological functions. Adropin preserved the functionality of BBB by increasing N-cadherin expression and reducing extravasation of albumin. Moreover, in vivo knockdown of Notch1 and Hes1 both abolished the protective effects of adropin. Taken together, our data demonstrate that adropin constitutes a potential treatment value for ICH by preserving BBB and improving functional outcomes through the Notch1 signaling pathway.


Assuntos
Proteínas Sanguíneas/metabolismo , Barreira Hematoencefálica/fisiologia , Hemorragia Cerebral/metabolismo , Peptídeos/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Proteínas Sanguíneas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Hemorragia Cerebral/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Peptídeos/farmacologia , Transdução de Sinais/fisiologia
9.
Stroke ; 48(6): 1655-1664, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28495827

RESUMO

BACKGROUND AND PURPOSE: Energy depletion is a critical factor leading to cell death and brain dysfunction after ischemic stroke. In this study, we investigated whether energy depletion is involved in hyperglycemia-induced hemorrhagic transformation after ischemic stroke and determined the pathway underlying the beneficial effects of hyperbaric oxygen (HBO). METHODS: After 2-hour middle cerebral artery occlusion, hyperglycemia was induced by injecting 50% dextrose (6 mL/kg) intraperitoneally at the onset of reperfusion. Immediately after it, rats were exposed to HBO at 2 atmospheres absolutes for 1 hour. ATP synthase inhibitor oligomycin A, nicotinamide phosphoribosyl transferase inhibitor FK866, or silent mating type information regulation 2 homolog 1 siRNA was administrated for interventions. Infarct volume, hemorrhagic volume, and neurobehavioral deficits were recorded; the level of blood glucose, ATP, and nicotinamide adenine dinucleotide and the activity of nicotinamide phosphoribosyl transferase were monitored; the expression of silent mating type information regulation 2 homolog 1, acetylated p53, acetylated nuclear factor-κB, and cleaved caspase 3 were detected by Western blots; and the activity of matrix metalloproteinase-9 was assayed by zymography. RESULTS: Hyperglycemia deteriorated energy metabolism and reduced the level of ATP and nicotinamide adenine dinucleotide and exaggerated hemorrhagic transformation, blood-brain barrier disruption, and neurological deficits after middle cerebral artery occlusion. HBO treatment increased the levels of the ATP and nicotinamide adenine dinucleotide and consequently increased silent mating type information regulation 2 homolog 1, resulting in attenuation of hemorrhagic transformation, brain infarction, as well as improvement of neurological function in hyperglycemic middle cerebral artery occlusion rats. CONCLUSIONS: HBO induced activation of ATP/nicotinamide adenine dinucleotide/silent mating type information regulation 2 homolog 1 pathway and protected blood-brain barrier in hyperglycemic middle cerebral artery occlusion rats. HBO might be promising approach for treatment of acute ischemic stroke patients, especially patients with diabetes mellitus or treated with r-tPA (recombinant tissue-type plasminogen activator).


Assuntos
Trifosfato de Adenosina/metabolismo , Isquemia Encefálica , Hemorragia Cerebral , Oxigenoterapia Hiperbárica/métodos , Hiperglicemia/metabolismo , Infarto da Artéria Cerebral Média , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sirtuína 1/metabolismo , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/terapia , Modelos Animais de Doenças , Hiperglicemia/complicações , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
10.
Biomed Res Int ; 2017: 8584753, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373987

RESUMO

Hydrocephalus (HCP) is a common complication in patients with subarachnoid hemorrhage. In this review, we summarize the advanced research on HCP and discuss the understanding of the molecular originators of HCP and the development of diagnoses and remedies of HCP after SAH. It has been reported that inflammation, apoptosis, autophagy, and oxidative stress are the important causes of HCP, and well-known molecules including transforming growth factor, matrix metalloproteinases, and iron terminally lead to fibrosis and blockage of HCP. Potential medicines for HCP are still in preclinical status, and surgery is the most prevalent and efficient therapy, despite respective risks of different surgical methods, including lamina terminalis fenestration, ventricle-peritoneal shunting, and lumbar-peritoneal shunting. HCP remains an ailment that cannot be ignored and even with various solutions the medical community is still trying to understand and settle why and how it develops and accordingly improve the prognosis of these patients with HCP.


Assuntos
Hidrocefalia/fisiopatologia , Aneurisma Intracraniano/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia , Hemorragia Subaracnóidea/cirurgia , Apoptose/genética , Autofagia/genética , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/etiologia , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/diagnóstico , Aneurisma Intracraniano/cirurgia , Estresse Oxidativo/genética , Prognóstico , Fatores de Risco , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico
11.
J Cereb Blood Flow Metab ; 37(4): 1299-1310, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27317656

RESUMO

Heme-degradation after erythrocyte lysis plays an important role in the pathophysiology of intracerebral hemorrhage. Low-density lipoprotein receptor-related protein-1 is a receptor expressed predominately at the neurovascular interface, which facilitates the clearance of the hemopexin and heme complex. In the present study, we investigated the role of low-density lipoprotein receptor-related protein-1 in heme removal and neuroprotection in a mouse model of intracerebral hemorrhage. Endogenous low-density lipoprotein receptor-related protein-1 and hemopexin were increased in ipsilateral brain after intracerebral hemorrhage, accompanied by increased hemoglobin levels, brain water content, blood-brain barrier permeability and neurological deficits. Exogenous human recombinant low-density lipoprotein receptor-related protein-1 protein reduced hematoma volume, brain water content surrounding hematoma, blood-brain barrier permeability and improved neurological function three days after intracerebral hemorrhage. The expression of malondialdehyde, fluoro-Jade C positive cells and cleaved caspase 3 was increased three days after intracerebral hemorrhage in the ipsilateral brain tissues and decreased with recombinant low-density lipoprotein receptor-related protein-1. Intracerebral hemorrhage decreased and recombinant low-density lipoprotein receptor-related protein-1 increased the levels of superoxide dismutase 1. Low-density lipoprotein receptor-related protein-1 siRNA reduced the effect of human recombinant low-density lipoprotein receptor-related protein-1 on all outcomes measured. Collectively, our findings suggest that low-density lipoprotein receptor-related protein-1 contributed to heme clearance and blood-brain barrier protection after intracerebral hemorrhage. The use of low-density lipoprotein receptor-related protein-1 as supplement provides a novel approach to ameliorating intracerebral hemorrhage brain injury via its pleiotropic neuroprotective effects.


Assuntos
Hemorragia Cerebral/metabolismo , Heme/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Receptores de LDL/metabolismo , Receptores de LDL/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemopexina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos Endogâmicos , Fármacos Neuroprotetores/administração & dosagem , Receptores de LDL/administração & dosagem , Proteínas Recombinantes , Proteínas Supressoras de Tumor/administração & dosagem
12.
J Cereb Blood Flow Metab ; 37(6): 1971-1981, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27389179

RESUMO

Axl, a tyrosine kinase receptor, was recently identified as an essential component regulating innate immune response. Suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 are potent Axl-inducible negative inflammatory regulators. This study investigated the role of Axl signaling pathway in immune restoration in an autologous blood-injection mouse model of intracerebral hemorrhage. Recombinant growth arrest-specific 6 (Gas6) and R428 were administrated as specific agonist and antagonist. In vivo knockdown of Axl or suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 by siRNA was applied. After intracerebral hemorrhage, the expression of endogenous Axl, soluble Axl, and Gas6 was increased, whereas the expression of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 was inhibited. Recombinant growth arrest-specific 6 administration alleviated brain edema and improved neurobehavioral performances. Moreover, enhanced Axl phosphorylation with cleavage of soluble Axl (sAxl), and an upregulation of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 were observed. In vivo knockdown of Axl and R428 administration both abolished the effect of recombinant growth arrest-specific 6 on brain edema and also decreased the expression suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3. In vivo knockdown of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3 aggravated cytokine releasing despite of recombinant growth arrest-specific 6. In conclusion, Axl plays essential role in immune restoration after intracerebral hemorrhage. And recombinant growth arrest-specific 6 attenuated brain injury after intracerebral hemorrhage, probably by enhancing Axl phosphorylation and production of suppressor of cytokine signaling 1 and suppressor of cytokine signaling 3.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Proteínas Proto-Oncogênicas/agonistas , Receptores Proteína Tirosina Quinases/agonistas , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Benzocicloeptenos/farmacologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes , Triazóis/farmacologia , Receptor Tirosina Quinase Axl
13.
Med Gas Res ; 6(1): 20-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27826420

RESUMO

Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.

14.
Exp Neurol ; 283(Pt A): 157-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302678

RESUMO

OBJECTIVE: Inflammation plays a key role in the pathophysiological processes after intracerebral hemorrhage (ICH). Post-ICH macrophages infiltrate the brain and release pro-inflammatory factors (tumor necrosis factor-α), amplifying microglial activation and neutrophil infiltration. Platelet-derived growth factor receptor-ß (PDGFR-ß) is expressed on macrophages and it's activation induces the recruitment of macrophages. Platelet-derived growth factor-D (PDGF-D) is an agonist with a significantly higher affinity to the PDGFR-ß compared to another isoform of the receptor. In this study, we investigated the role of PDGF-D in the pro-inflammatory response after ICH in mice. METHODS: A blood injection model of ICH was used in eight-week old male CD1 mice (weight 30g). Some mice received an injection of plasmin or PDGF-D. Gleevec, a PDGFR inhibitor, was administered at 1, 3 or 6h post-ICH. Plasmin was administered with or without PDGF-D siRNAs mixture or scramble siRNA. A plasmin-antagonist, ε-Aminocaproic acid (EACA), was co-administrated with the blood. The effects of ICH and treatment on the brain injury and post-ICH inflammation were investigated. RESULTS: ICH resulted in the overexpression of PDGF-D, associated with the infiltration of macrophages. PDGFR-inhibition decreased ICH-induced brain injury, attenuating macrophage and neutrophil infiltration, reducing microglial activation and TNF-α production. Administration of recombinant PDGF-D induced TNF-α production, and PDGFR-inhibition attenuated it. A plasmin-antagonist suppressed PDGFR-ß activation and microglial activation. Plasmin increased PDGF-D expression, and PDGF-D inhibition reduced neutrophil infiltration. CONCLUSION: ICH-induced PDGF-D accumulation contributed to post-ICH inflammation via PDGFR activation and enhanced macrophage infiltration. The inhibition of PDGFR had an anti-inflammatory effect. Plasmin is a possible upstream effector of PDGF-D. The targeting of PDGF-D may provide a novel way to decrease brain injury after ICH.


Assuntos
Hemorragia Cerebral/complicações , Encefalite/etiologia , Encefalite/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Ácido Aminocaproico/administração & dosagem , Ácido Aminocaproico/farmacologia , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/patologia , Comportamento Exploratório/efeitos dos fármacos , Fibrinolisina/administração & dosagem , Fibrinolisina/farmacologia , Fibrinolíticos/administração & dosagem , Fibrinolíticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Mesilato de Imatinib/administração & dosagem , Mesilato de Imatinib/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia
15.
Crit Care Med ; 44(6): e390-402, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26646459

RESUMO

OBJECTIVE: Platelet-derived growth factor-BB activates platelet-derived growth factor receptor-ß and promotes vascular smooth muscle cell phenotypic transformation. Elevated levels of non-muscle myosin IIB (SMemb) are found in secretory smooth muscle cells along with inflammatory mediators, such as intercellular adhesion molecule-1, which can amplify neutrophil infiltration into the brain. In the present study, we investigated the role of platelet-derived growth factor-BB/platelet-derived growth factor receptor-ß following intracerebral hemorrhage-induced brain injury in mice, with emphasis on its ability to promote vascular smooth muscle cell phenotypic transformation followed by increased intercellular adhesion molecule-1 expression and elevated neutrophil infiltration in the vicinity of the hematoma. We also determined the extent to which plasmin from the hematoma influences the platelet-derived growth factor-BB/platelet-derived growth factor receptor-ß system subsequent to intracerebral hemorrhage. DESIGN: Controlled in vivo laboratory study. SETTING: Animal research laboratory. SUBJECTS: One hundred and fifty six eight-week-old male CD1 mice. INTERVENTIONS: Brain injury was induced by autologous arterial blood or plasmin injection into mouse brains. Small interfering RNA targeting platelet-derived growth factor receptor-ß was administered 24 hours before intracerebral hemorrhage. A platelet-derived growth factor receptor antagonist, Gleevec, was administered following intracerebral hemorrhage. A mitogen-activated protein kinase-activated protein kinase 2 inhibitor (KKKALNRQLGVAA) was delivered with platelet-derived growth factor-BB in naïve animals. Platelet-derived growth factor-BB was injected with a plasmin inhibitor (ε-aminocaproic acid) in intracerebral hemorrhage mice. Plasmin-injected mice were given platelet-derived growth factor receptor-ß small interfering RNA 24 hours before the operation. Neurological deficits, brain edema, western blots, and immunofluorescence were evaluated. MEASUREMENTS AND MAIN RESULTS: Platelet-derived growth factor receptor-ß small interfering RNA attenuated SMemb and intercellular adhesion molecule-1 expression and neutrophil infiltration at 24 hours post injury and reduced neurological deficits and brain edema at 24 and 72 hours following intracerebral hemorrhage. The platelet-derived growth factor receptor antagonist, Gleevec, reduced SMemb and intercellular adhesion molecule-1 expression. Platelet-derived growth factor receptor-ß activation led to increased expression of intercellular adhesion molecule-1 and was reversed by KKKALNRQLGVAA in naïve mice. Plasmin inhibition suppressed platelet-derived growth factor receptor-ß activation and neutrophil infiltration, whereas exogenous platelet-derived growth factor-BB increased platelet-derived growth factor receptor-ß activation, regardless of plasmin inhibition. Platelet-derived growth factor receptor-ß small interfering RNA decreased the expression of intercellular adhesion molecule-1 by plasmin injection. CONCLUSION: The platelet-derived growth factor-BB/platelet-derived growth factor receptor-ß system contributes to neuroinflammation through vascular smooth muscle cell phenotypic transformation near the hematoma via the p38 mitogen-activated protein kinase/mitogen-activated protein kinase-activated protein kinase 2 pathway following intracerebral hemorrhage. Plasmin is hypothesized to be upstream of the proposed neuroinflammatory system. The therapeutic intervention targeting the platelet-derived growth factor-BB/platelet-derived growth factor receptor-ß is a novel strategy to prevent plasmin-induced brain injury following intracerebral hemorrhage.


Assuntos
Hemorragia Cerebral/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Actinas/metabolismo , Animais , Becaplermina , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Hemorragia Cerebral/complicações , Fibrinolisina/antagonistas & inibidores , Fibrinolisina/farmacologia , Fibrinolíticos/farmacologia , Mesilato de Imatinib/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Músculo Liso Vascular/citologia , Neutrófilos/fisiologia , Miosina não Muscular Tipo IIB/genética , Fenótipo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , RNA Interferente Pequeno/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Stroke ; 46(2): 485-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25523052

RESUMO

BACKGROUND AND PURPOSE: 17ß-estradiol (E2) has been reported to reduce bleeding and brain injury in experimental intracerebral hemorrhage (ICH) model. However, it is not clear if E2 can prevent early hematoma expansion (HE) induced by hyperglycemia in acute ICH. The aim of this study is to evaluate the effects of E2 on HE and its potential mechanisms in hyperglycemic ICH mice. METHODS: Two hundred, 8-week-old male CD1 mice were used. ICH was performed by collagenase injection. 50% dextrose (8 mL/kg) was injected intraperitoneally 3 hours after ICH to induce acute HE (normal saline was used as control). The time course of HE was measured 6, 24, and 72 hours after ICH. Two dosages (100 and 300 µg/kg) of E2 were administrated 1 hour after ICH intraperitoneally. Neurobehavioral deficits, hemorrhage volume, blood glucose level, and blood-brain barrier disruption were measured. To study the mechanisms of E2, estrogen receptor α (ERα) inhibitor methyl-piperidino-pyrazole, silent information regulator 1 (Sirt1) siRNA was administered, respectively. Protein expression of ERα, Sirt1, and acetylated nuclear factor-kappa B, and activity of matrix metalloproteinases-9 were detected. RESULTS: Hyperglycemia enhanced HE and deteriorated neurological deficits after ICH from 6 hours after ICH. E2 treatment prevented blood-brain barrier disruption and improved neurological deficits 24 and 72 hours after ICH. E2 reduced HE by activating its receptor ERα, decreasing the expression of Sirt1, deacelylation of nuclear factor-kappa B, and inhibiting the activity of matrix metalloproteinases-9. ERα inhibitor methyl-piperidino-pyrazole and Sirt1 siRNA removed these effects of E2. CONCLUSIONS: E2 treatment prevented hyperglycemia-enhanced HE and improved neurological deficits in ICH mice mediated by ERα/Sirt1/nuclear factor-kappa B pathway. E2 may serve as an alternative treatment to decrease early HE after ICH.


Assuntos
Hemorragia Cerebral/metabolismo , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Hematoma/metabolismo , Hiperglicemia/metabolismo , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Animais , Hemorragia Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Hematoma/prevenção & controle , Hiperglicemia/tratamento farmacológico , Masculino , Camundongos
17.
J Hepatol ; 61(5): 1048-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24972044

RESUMO

BACKGROUND & AIMS: Hepatic ischemia and reperfusion (I/R) injury is a major complication of liver transplantation, hepatic resection and trauma. Helium preconditioning (HPC) exerts protection against ischemic stress. We investigated potential beneficial effects of HPC on I/R-induced liver injury and investigated mechanisms underlying HPC-induced protection. METHODS: We employed a model of segmental warm hepatic I/R on BALB/c mice. Serum ALT was measured and livers were analysed by histology, RT-PCR and western blot. HPC was induced by inhalation of a 70% helium/30% oxygen mixture for three 5-min periods, interspersed with three 5-min washout periods by room air. We tested which component of HPC (the helium/air mixture inhalation, the air room gap, or the interaction between these two factors) is protective. RESULTS: We found that HPC caused a significant increase in Akt phosphorylation in hepatocytes. The HPC-induced Akt phosphorylation resulted in decreased hepatocellular injury and improved survival rate of the treated animals. PI3K inhibitors abolished HPC induced effects. HPC-induced Akt phosphorylation affected expression of its downstream molecules. The effects of HPC on the PI3K/Akt pathway were attenuated by adenosine A2A receptor blockade, but could be re-established by PTEN inhibition. We demonstrated that the interaction of helium/air breathing and air gaps is responsible for the observed effects of HPC. CONCLUSIONS: HPC may be a promising strategy leading to a decrease in I/R induced liver injury in clinical settings. Additionally, the PI3K/Akt pathway plays an essential role in the protective effects of HPC in hepatic I/R injury.


Assuntos
Hélio/uso terapêutico , Precondicionamento Isquêmico/métodos , Transplante de Fígado , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Condicionamento Pré-Transplante/métodos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosforilação , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Triazinas/farmacologia , Triazóis/farmacologia , Isquemia Quente
18.
Transl Stroke Res ; 5(1): 118-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24323731

RESUMO

Hypoxia inducible factor (HIF)-1α is the central transcriptional factor for the regulation of oxygen-associated genes in response to hypoxia. Erythropoietin (EPO), a hematopoietic growth factor, increases oxygen availability during hypoxia/ischemia and is associated with neuroprotection following hypoxia-ischemia in laboratory models of stroke. However, EPO has failed to translate in a clinical setting. Thus, it is critical to elucidate the key players in EPO-induced neuroprotection. Our preliminary studies have shown that EPO, as a downstream gene of HIF, inhibits HIF-1α in a dose-dependent manner in an in vitro model of hypoxia-ischemia. This study is designed to elucidate the primary mediator of EPO-induced HIF-1α inhibition and subsequent cell survival/neuroprotection. Oxygen and glucose deprivation (OGD) of nerve growth factor-differentiated rat pheochromocytoma (PC-12) cells were used to model hypoxia-ischemia in an in vitro environment. The profile of HIF-1α, HIF-2α and prolyl hydroxylase domain 2 (PHD-2) expression; HIF-1α and prolyl hydroxylase (PHD-2) mRNA levels; matrix metalloproteinase (MMP)-9; and cell death was evaluated in the presence and absence of either EPO or PHD-2 inhibitor during OGD. Our findings showed that EPO treatment resulted in an increase in PHD-2 transcription and translation, inhibition of HIF-1α expression, reactive oxygen species formation, and MMP-9 activity, resulting in increased cell survival after OGD. We also observed that EPO-induced cell survival/neuroprotection was reversed by siRNA silencing of PHD-2. This led to the conclusion that PHD-2 is a key mediator of EPO-induced HIF-1α inhibition and subsequent neuroprotection in an in vitro model of hypoxia-ischemia.


Assuntos
Eritropoetina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Pró-Colágeno-Prolina Dioxigenase/biossíntese , Animais , Modelos Animais de Doenças , Prolina Dioxigenases do Fator Induzível por Hipóxia , Células PC12 , Pró-Colágeno-Prolina Dioxigenase/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima
19.
J Neurosurg ; 118(2): 465-77, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23198805

RESUMO

OBJECT: Primary pontine hemorrhage (PPH) represents approximately 7% of all intracerebral hemorrhages (ICHs) and is a clinical condition of which little is known. The aim of this study was to characterize the early brain injury, neurobehavioral outcome, and long-term histopathology in a novel preclinical rat model of PPH. METHODS: The authors stereotactically infused collagenase (Type VII) into the ventral pontine tegmentum of the rats, in accordance with the most commonly affected clinical region. Measures of cerebrovascular permeability (brain water content, hemoglobin assay, Evans blue, collagen Type IV, ZO-1, and MMP-2 and MMP-9) and neurological deficit were quantified at 24 hours postinfusion (Experiment 1). Functional outcome was measured over a 30-day period using a vertebrobasilar scale (the modified Voetsch score), open field, wire suspension, beam balance, and inclined-plane tests (Experiment 2). Neurocognitive ability was determined at Week 3 using the rotarod (motor learning), T-maze (working memory), and water maze (spatial learning and memory) (Experiment 3), followed by histopathological analysis 1 week later (Experiment 4). RESULTS: Stereotactic collagenase infusion caused dose-dependent elevations in hematoma volume, brain edema, neurological deficit, and blood-brain barrier rupture, while physiological variables remained stable. Functional outcomes mostly normalized by Week 3, whereas neurocognitive deficits paralleled the cystic cavitary lesion at 30 days. Obstructive hydrocephalus did not develop despite a clinically relevant 30-day mortality rate (approximately 54%). CONCLUSIONS: These results suggest that the model can mimic several translational aspects of pontine hemorrhage in humans and can be used in the evaluation of potential preclinical therapeutic interventions.


Assuntos
Comportamento Animal , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Ponte/irrigação sanguínea , Ponte/patologia , Ratos Sprague-Dawley , Animais , Barreira Hematoencefálica/patologia , Edema Encefálico/induzido quimicamente , Edema Encefálico/patologia , Hemorragia Cerebral/induzido quimicamente , Cognição , Colagenases/toxicidade , Progressão da Doença , Hematoma/induzido quimicamente , Hematoma/patologia , Masculino , Ratos , Água/metabolismo
20.
J Cereb Blood Flow Metab ; 32(12): 2201-10, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22968320

RESUMO

The inflammatory response plays a pivotal role in propagating injury of intracerebral hemorrhage (ICH). Glucagon-like-peptide-1 (GLP-1) is a hormone with antidiabetic effect and may also have antiinflammatory properties. Despite consensus that the glucoregulatory action is mediated by the GLP-1 receptor (GLP-1R), mechanisms in the brain remain unclear. We investigated the effect of a long-acting GLP-1 analog, liraglutide, and its truncated metabolite, GLP-1(9-36)a from dipeptidyl peptidase-4 (DPP-4) cleavage in ICH-induced brain injury. Primary outcomes were cerebral edema formation, neurobehavior, and inflammatory parameters. GLP-1(9-36)a, GLP-1R inhibitor, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation inhibitor and DPP-4 inhibitor were administered to examine the mechanisms of action. Liraglutide suppressed neuroinflammation, prevented brain edema and neurologic deficit following ICH, which were partially reversed by GLP-1R inhibitor and AMPK phosphorylation inhibitor. Liraglutide-mediated AMPK phosphorylation was unaffected by GLP-1R inhibitor, and was found to be induced by GLP-1(9-36)a. GLP-1(9-36)a showed salutary effects on primary outcomes that were reversed by AMPK phosphorylation inhibitor but not by GLP-1R inhibitor. Liraglutide and DPP-4 inhibitor co-administration reversed liraglutide-mediated AMPK phosphorylation and antiinflammatory effects. Liraglutide exerted duals actions and the antiinflammatory effects are partially mediated by its metabolite in a phosphorylated AMPK-dependent manner. Therapies that inhibit GLP-1 degradation may weaken the metabolite-mediated effects.


Assuntos
Materiais Biomiméticos/farmacocinética , Hemorragia Cerebral/metabolismo , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Fármacos Neuroprotetores/farmacocinética , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Materiais Biomiméticos/farmacologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Dipeptidil Peptidase 4/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacocinética , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Liraglutida , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA