Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355493

RESUMO

NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies.

2.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36341492

RESUMO

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Assuntos
Linfoma Cutâneo de Células T , Quinases Ativadas por p21 , Animais , Camundongos , Genômica , Xenoenxertos , Linfoma Cutâneo de Células T/tratamento farmacológico
3.
J Med Chem ; 65(4): 3193-3217, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35119267

RESUMO

Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Meduloblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Relação Estrutura-Atividade
4.
J Med Chem ; 64(12): 8486-8509, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34101461

RESUMO

Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as stand-alone or in combination with targeted drugs.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Leucemia Prolinfocítica de Células T/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Cloridrato de Bendamustina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirrolidinas/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , para-Aminobenzoatos/farmacologia
5.
J Med Chem ; 64(5): 2691-2704, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33576627

RESUMO

Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes, ranging from cellular stress to intracellular transport. Inhibition of aberrant HDAC6 activity in several cancers and neurological diseases has been shown to be efficacious in both preclinical and clinical studies. While selective HDAC6 targeting has been pursued as an alternative to pan-HDAC drugs, identifying truly selective molecular templates has not been trivial. Herein, we report a structure-activity relationship study yielding TO-317, which potently binds HDAC6 catalytic domain 2 (Ki = 0.7 nM) and inhibits the enzyme function (IC50 = 2 nM). TO-317 exhibits 158-fold selectivity for HDAC6 over other HDAC isozymes by binding the catalytic Zn2+ and, uniquely, making a never seen before direct hydrogen bond with the Zn2+ coordinating residue, His614. This novel structural motif targeting the second-sphere His614 interaction, observed in a 1.84 Å resolution crystal structure with drHDAC6 from zebrafish, can provide new pharmacophores for identifying enthalpically driven, high-affinity, HDAC6-selective inhibitors.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Sulfonamidas/farmacologia , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
6.
Eur J Med Chem ; 201: 112411, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615502

RESUMO

Dysregulated Histone Deacetylase (HDAC) activity across multiple human pathologies have highlighted this family of epigenetic enzymes as critical druggable targets, amenable to small molecule intervention. While efficacious, current approaches using non-selective HDAC inhibitors (HDACi) have been shown to cause a range of undesirable clinical toxicities. To circumvent this, recent efforts have focused on the design of highly selective HDACi as a novel therapeutic strategy. Beyond roles in regulating transcription, the unique HDAC6 (with two catalytic domains) regulates the deacetylation of α-tubulin; promoting growth factor-controlled cell motility, cell division, and metastatic hallmarks. Recent studies have linked aberrant HDAC6 function in various hematological cancers including acute myeloid leukaemia and multiple myeloma. Herein, we report the discovery, in vitro characterization, and biological evaluation of PTG-0861 (JG-265), a novel HDAC6-selective inhibitor with strong isozyme-selectivity (∼36× ) and low nanomolar potency (IC50 = 5.92 nM) against HDAC6. This selectivity profile was rationalized via in silico docking studies and also observed in cellulo through cellular target engagement. Moreover, PTG-0861 achieved relevant potency against several blood cancer cell lines (e.g. MV4-11, MM1S), whilst showing limited cytotoxicity against non-malignant cells (e.g. NHF, HUVEC) and CD-1 mice. In examining compound stability and cellular permeability, PTG-0861 revealed a promising in vitro pharmacokinetic (PK) profile. Altogether, in this study we identified a novel and potent HDAC6-selective inhibitor (∼4× more selective than current clinical standards - citarinostat, ricolinostat), which achieves cellular target engagement, efficacy in hematological cancer cells with a promising safety profile and in vitro PK.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/metabolismo , Benzamidas/farmacocinética , Domínio Catalítico , Linhagem Celular Tumoral , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
7.
J Pharm Biomed Anal ; 184: 113182, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32113119

RESUMO

Signal transducer and activator of transcription 5B (STAT5B) is constitutively activated in multiple cancers as a result of hyperactivating mutations or dysregulation of upstream effectors. Therapeutic strategies have predominantly targeted the Src homology 2 (SH2) domain to inhibit STAT phosphorylation, a prerequisite for STAT5B transcriptional activation. An alternative approach for STAT5B pharmacologic inhibition involves targeting the DNA-binding domain (DBD). However, this strategy remains relatively unexplored and is further hindered by the lack of a high-throughput in vitro engagement assay. Herein, we present the development and optimization of a STAT5B DBD fluorescence polarization (FP) assay, which facilitates rapid screening of small molecules targeting the STAT5B DBD though displacement of a fluorescently labelled oligonucleotide. The assay can generate a complete DNA-binding profile in 10 min, with signal stability up to 2 h, and minimal changes under a range of conditions including 10 % (v/v) glycerol, 15 % (v/v) DMSO, 1 mM NaCl, 0.02 % (w/v) BSA, and 1 mM EDTA. This assay is compatible with both unphosphorylated and phosphorylated STAT5B and demonstrates suitability for high-throughput screening with a Z' factor of 0.68 ±â€¯0.07 and a signal to noise ratio of 6.7 ±â€¯0.84.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Polarização de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Domínios Proteicos/efeitos dos fármacos , Fator de Transcrição STAT5/antagonistas & inibidores , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Oligonucleotídeos/metabolismo , Fator de Transcrição STAT5/metabolismo
8.
ACS Med Chem Lett ; 11(1): 56-64, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31938464

RESUMO

The HDAC inhibitor 4-tert-butyl-N-(4-(hydroxycarbamoyl)phenyl)benzamide (AES-350, 51) was identified as a promising preclinical candidate for the treatment of acute myeloid leukemia (AML), an aggressive malignancy with a meagre 24% 5-year survival rate. Through screening of low-molecular-weight analogues derived from the previously discovered novel HDAC inhibitor, AES-135, compound 51 demonstrated greater HDAC isoform selectivity, higher cytotoxicity in MV4-11 cells, an improved therapeutic window, and more efficient absorption through cellular and lipid membranes. Compound 51 also demonstrated improved oral bioavailability compared to SAHA in mouse models. A broad spectrum of experiments, including FACS, ELISA, and Western blotting, were performed to support our hypothesis that 51 dose-dependently triggers apoptosis in AML cells through HDAC inhibition.

9.
RSC Med Chem ; 11(1): 51-71, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479604

RESUMO

Protein prenylation is a critical mediator in several diseases including cancer and acquired immunodeficiency syndrome (AIDS). Therapeutic intervention has focused primarily on directly targeting the prenyltransferase enzymes, FTase and GGTase I and II. To date, several drugs have advanced to clinical trials and while promising, they have yet to gain approval in a medical setting due to off-target effects and compensatory mechanisms activated by the body which results in drug resistance. While the development of dual inhibitors has mitigated undesirable side effects, potency remains sub-optimal for clinical development. An alternative approach involves antagonizing the upstream mevalonate pathway enzymes, FPPS and GGPPS, which mediate prenylation as well as cholesterol synthesis. The development of these inhibitors presents novel opportunities for dual inhibition of cancer-driven prenylation as well as cholesterol accumulation. Herein, we highlight progress towards the development of inhibitors against the prenylation machinery.

10.
Nat Commun ; 10(1): 2517, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175292

RESUMO

Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5BN642H, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5BN642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5BN642H-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5BN642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5BN642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5BN642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5BN642H, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5BN642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.


Assuntos
Linfócitos Intraepiteliais , Leucemia de Células T/genética , Linfoma de Células T/genética , Mutação , Fator de Transcrição STAT5/genética , Animais , Neoplasias Hematológicas/genética , Humanos , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Domínios de Homologia de src
11.
J Pharm Biomed Anal ; 162: 60-65, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30223143

RESUMO

Inhibition of STAT phosphorylation is recognized as a viable therapeutic strategy for disrupting tumorigenesis. Constitutive STAT phosphorylation is found with high frequency in a number of primary tumor types, while non-cancer cells exhibit low basal activity, providing an exploitable therapeutic window. STAT activation involves phosphorylation of the SH2 domain by a number of tyrosine kinases followed by STAT dimerization and translocation to the nucleus. By blocking the cognate binding site, STAT SH2-domain inhibitors can impede kinase-mediated de novo STAT phosphorylation. Assessing for inhibitors of STAT phosphorylation has previously been conducted exclusively in cellulo using Western blot analysis. However, while providing useful in cellulo efficacy, it is not possible to conclude that inhibition is due to a direct blockade of STAT protein. Here we developed a functional assay that directly reports the blockade of phosphorylation as a result of inhibitor interaction with STAT proteins. We have optimized reaction conditions for the functional assay and validated the assay against known STAT5B ligands, including peptides and small molecule inhibitors. As part of the study, we have also identified several sites of STAT5B phosphorylation by Abl kinase. This assay will serve to delineate the functional mechanism of STAT binders in vitro and deconvolute the mechanism of phospho-STAT inhibition observed in Western blot analysis.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Fator de Transcrição STAT5/metabolismo , Humanos , Cinética , Ligantes , Fosforilação , Proteínas Proto-Oncogênicas c-abl/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA