Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400236, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934210

RESUMO

Intending to homogenize the biological activities of both quinoxaline and imidazole moieties, the proligand, 1-methyl-3-quinoxaline-imidazolium hexaflurophosphate (1.HPF6), and [Ag(1)2][PF6], (2); [Au(1)2][PF6], (3); and [Au(1)Cl3], (4) NHC complexes were synthesized. All the synthesized compounds were characterized by elemental analysis, NMR, and UV-Vis spectroscopy. Finally, single crystal X-ray structures revealed a linear geometry for complex 2 whereas a square planar geometry for complex 4. The formation of complex 3 was confirmed and supported by its MS spectra. The antibacterial activities of all the synthesized complexes were investigated against gram-positive bacteria and gram-negative bacteria. The Au(III)-NHC complex, 4 showed the highest antibacterial activity with extremely low MIC values against both the bacterial strains (0.24 µg.mL-1).  Monitoring of zeta potential supports the higher activity of complex 4 compared to 2 and 3. ROS production by complex 4 has also been measured in vitro in the CT26 cancer cell lines, which is directly responsible for targetting and killing the bacterial pathogens. Cell cytotoxicity assay using 293T cell lines has been performed to investigate the biocompatibility nature of complex 4. Also, an excellent hemocompatibility was assigned to it from its hemolytic studies,   which provide valuable insights into the design of novel antibacterial agents.

3.
Sci Rep ; 13(1): 21899, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081993

RESUMO

Methotrexate (MTX), an efficient chemotherapy medication is used in treating various malignancies. However, the breast cancer cell line MDA-MB-231 has developed resistance to it due to low levels of the MTX transport protein, and reduced folate carrier (RFC), making it less effective against these cancer cells. Here we designed a very simple, biocompatible, and non-toxic amine-capped ZnO quantum dots to overcome the MTX resistance on the MDA-MB-231 breast cancer cell line. The QD was characterized by HRTEM, DLS EDX, FT-IR, UV-Vis, and Fluorescence spectroscopy. MTX loading onto the QD was confirmed through fluorescence and UV-Vis spectroscopy. Additionally, extensive confocal microscopic investigations were carried out to determine whether the MTX was successfully released on the MDA-MB-231 cell line. It was discovered that QD is a better pH-responsive delivery system than the previous ones because it successfully delivers MTX to the MDA-MB-231 at a higher rate on an acidic pH than it does at a physiological pH. QD also has anticancer activity and can eradicate cancer cells on its own. These factors make the QD to be an effective pH-responsive delivery system that can improve the efficacy of the medication in therapeutic diagnosis.


Assuntos
Neoplasias da Mama , Óxido de Zinco , Humanos , Feminino , Metotrexato , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Óxido de Zinco/farmacologia , Células MDA-MB-231 , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
4.
Curr Protein Pept Sci ; 23(1): 33-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086446

RESUMO

BACKGROUND: COVID-19 is a global threat as a result of the incessant spread of SARS-CoV- 2, necessitating the rapid availability of effective antiviral medications to protect our society. For SARSCoV- 2, a group of peptides has already been indicated, although their effectiveness has yet to be shown. SARS-CoV-2 is an enveloped virus with hydrophobic fusion protein and spike glycoproteins. METHODS: Here, we have compiled a list of amphiphilic peptides that have been published, as well as their in-silico docking studies with the SARS-CoV-2 spike glycoprotein. RESULTS: The findings demonstrated that spike protein and amphiphilic peptides with increased binding affinity create a complex. It was also observed that PalL1 (ARLPRTMVHPKPAQP), 10AN1 (FWFTLIKTQAKQPARYRRFC), THETA defensin (RCICGRGICRLL), and mucroporin M1 (LFRLIKSLIKRLVSAFK) showed the binding free energy of more than -1000 kcal/mol. Molecular pI and hydrophobicity are also important factors of peptides to enhance the binding affinity with spike protein of SARS-CoV-2. CONCLUSION: In light of these findings, it is crucial to compare the in-vitro to in-vivo efficacy of amphiphilic peptides in order to produce an efficient anti-SARS-CoV-2 peptide therapy that might assist control the present pandemic scenario.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Micelas , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
ACS Omega ; 7(51): 48018-48033, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591115

RESUMO

The eco-friendly, cost-effective, and green fabrication of nanoparticles is considered a promising area of nanotechnology. Here, we report on the green synthesis and characterization of bovine serum albumin (BSA)-decorated chlorogenic acid silver nanoparticles (AgNPs-CGA-BSA) and the studies undertaken to verify their plausible antioxidant and antineoplastic effects. High-resolution transmission electron microscopy (HR-TEM), dynamic light scattering, X-ray diffraction, and Fourier transform infrared analyses depict an average mean particle size of ∼96 nm, spherical morphology, and nanocrystalline structure of AgNPs-CGA-BSA. DPPH scavenging and inhibition of lipid peroxidation signify the noticeable in vitro antioxidant potential of the nanoparticles. The in vitro experimental results demonstrate that AgNPs-CGA-BSA shows significant cytotoxicity to Dalton's lymphoma ascites (DLA) cells and generates an enhanced intracellular reactive oxygen species and oxidized glutathione (GSSG) and reduced glutathione (GSH) in DLA cells. Furthermore, mechanism investigation divulges the pivotal role of the downregulated expression of superoxide dismutase (SOD) and catalase (CAT), and these ultimately lead to apoptotic chromatin condensation in AgNPs-CGA-BSA-treated DLA cells. In addition, in vivo experiments reveal an excellent decrease in tumor cell count, an increase in serum GSH and CAT, SOD, and glutathione peroxidase activities, and a decrease in the malondialdehyde (MDA) level in DLA-bearing mice after AgNPs-CGA-BSA treatment. These findings suggest that the newly synthesized biogenic green silver nanoparticles have remarkable in vitro antioxidant and antineoplastic efficacy that triggers cytotoxicity, oxidative stress, and chromatin condensation in DLA cells and in vivo anticancer efficacy that enhances the host antioxidant status, and these might open a new path in T-cell lymphoma therapy.

6.
Front Microbiol ; 12: 729026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34782829

RESUMO

Accession numbers for whole-genome sequence of Brevibacillus sp. strain GI9 and SKDU10 are CAGD01000001 to CAGD01000061 and LSSO00000000, respectively. Members of the genus Brevibacillus have been demonstrated to produce a variety of bioactive compounds including polyketides, lipopeptides and bacteriocins. Lipopeptides are non-ribosomally synthesized surface-active compounds with antimicrobial, antitumor, and immune-stimulatory activities. They usually exhibit strong antifungal and antibacterial activities and are considered as promising compounds in controlling fungal diseases. In this study, we have characterized two lipopeptides from Brevibacillus sp. strains GI9 and SKDU10. The corresponding lipopeptides were purified by reverse-phase high-performance liquid chromatography. Mass analysis and characterization by MALDI-TOF-MS (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry) analysis revealed production of an iturin-like lipopeptide by strain GI9 and bogorol-like lipopeptide by strain SKDU10. Both lipopeptides exhibited broad spectrum antibacterial activity and inhibited the growth of various fungi. They showed minimum inhibitory concentration (MIC) values between 90 and 300 µg/ml against indicator strains of bacteria and drug-resistant Candida indicator strains. The lipopeptides did not show phytotoxic effect in seed germination experiments but caused hemolysis. Further, both lipopeptides inhibited the growth of fungi on fruits and vegetables in in vitro experiments, thereby exhibited potential use in biotechnological industry as effective biocontrol agents.

7.
Infect Disord Drug Targets ; 21(4): 608-618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32718300

RESUMO

BACKGROUND: COVID-19 is a life-threatening novel corona viral infection to our civilization and spreading rapidly. Tremendousefforts have been made by the researchers to search for a drug to control SARS-CoV-2. METHODS: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. RESULTS: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/- mol) was revealed to be the most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-- CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV-2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also performs the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). CONCLUSION: In the host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease, which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast in-vitro to in-vivo analysis towards the development of therapeutics against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Arsenicais , Glutationa , SARS-CoV-2/efeitos dos fármacos , Arsenicais/farmacologia , COVID-19 , Simulação por Computador , Glutationa/análogos & derivados , Glutationa/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores
8.
Probiotics Antimicrob Proteins ; 13(3): 611-623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33226581

RESUMO

As of recent, the pandemic episode of COVID-19, a severe acute respiratory syndrome brought about by a novel coronavirus (SARS-CoV-2) expanding the pace of mortality, has affected the disease rate profoundly. Invulnerability is the fundamental choice to prevent the ruining event of COVID-19, as the drugs and antibodies are in the phase of preliminary clinical trials. Within this brief period, a few strains of SARS-CoV-2 have been recognized by the vaccine manufacturers, which could be an incorrect guess about the strain that will end up spreading. Since the circulating SARS-CoV-2 strains continue to mutate, immunizations, if at all works, might be for a restricted time. We have not put sufficient time in research to understand the immune responses that correlate with protection as this could help refine vaccines. Here, we have summed up the adequacy of the immunomodulatory component of probiotics for the prevention against viral infections. Furthermore, an in silico data have been provided in support of the "probiotics-derived lipopeptides" role in inactivating spike (S) glycoprotein of SARS-CoV-2 and its host receptor molecule, ACE2. Among well characterized lipopeptides derived from different probiotic strains, subtilisin (Bacillus amyloliquefaciens), curvacin A (Lactobacillus curvatus), sakacin P (Lactobacillus sakei), lactococcin Gb (Lactococcus lactis) was utilized in this study to demonstrate a higher binding proclivity to S-protein of SARS-CoV-2 and human ACE2. The outcome revealed noteworthy capabilities of the lipopeptides, due to their amphiphilic nature, to bind spike protein and receptor molecule, which may act to competitively inhibit the mandatory interaction of SARS-CoV-2 with the host epithelial cell expressing ACE2 for its entry into the cell for reproduction. In the current situation, probiotic treatment alongside chemotherapy may assist in bringing about substantial improvement of the health of COVID-19 patients. At the same time, probiotics may aid towards building up the immune defenses in people to evade COVID-19.


Assuntos
COVID-19/prevenção & controle , Fatores Imunológicos/uso terapêutico , Peptídeos/uso terapêutico , Probióticos/uso terapêutico , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , COVID-19/metabolismo , Humanos
9.
Biochimie ; 177: 164-189, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827604

RESUMO

Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Bactérias/classificação , Neoplasias/tratamento farmacológico , Neoplasias/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/uso terapêutico , Bacteriocinas/química , Bacteriocinas/farmacologia , Bacteriocinas/uso terapêutico , Terapias Complementares , Humanos , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/uso terapêutico
10.
Infect Disord Drug Targets ; 20(4): 501-505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32234005

RESUMO

BACKGROUND: Colistin was considered as the most effective antibiotic against Acinetobacter baumannii, a widely-known opportunistic pathogen. In recent years, a number of colistin resistant strains have also been reported. OBJECTIVE: This work is commenced to investigate the contribution of efflux pumps toward resistance to colistin-like cyclic polypeptide antibiotics, since the efflux pumps serve as the escape routes leading to drug-resistance. METHODS: RNA was extracted from A. baumannii isolates cultured from samples procured by tracheal aspiration of infected patients. The expressions of gene(s) that played major roles in the regulation of efflux pump families and involvement of integron systems were studied using real time PCR. Antimicrobial susceptibility tests were conducted to investigate antibiotic resistance of the isolates. RESULTS: It was observed that genes coding for sugE, ydhE, ydgE, mdfA, ynfA and tolC significantly contributed to resistance against colistin antibiotics, however, no significant transcriptional change was observed in the efflux pump, MexAB-OprM. Results suggest that A. baumanii readily pumps out colistin via efflux pumps belonging to MATE and SMR family. CONCLUSION: Integral role of efflux pumps and integron 1 genetic system was elucidated towards evolution of multi-drug resistant strain(s). Therefore, for accurate therapeutics, an early detection of efflux genes is crucial before prescribing against colistin resistant A. baumanii.


Assuntos
Infecções por Acinetobacter/diagnóstico , Acinetobacter baumannii/isolamento & purificação , Colistina/farmacologia , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Paracentese , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Regulação para Cima
11.
Microb Drug Resist ; 26(8): 880-899, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32119634

RESUMO

Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Biofilmes/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo
12.
J Nanosci Nanotechnol ; 18(4): 2361-2369, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442904

RESUMO

Green chemistry polymers from renewable resources have recently received much more attention from pharmaceutical researchers. However, the appropriate application of a polymer depends on its chemical nature, biocompatibility and microstructure. Here, tannin polyphenols from the common beverage, tea, are used to develop a novel self-assembled porous capsule as a microstructure of hydrogel for versatile biological applications, such as drug delivery, antioxidant and wound healing activity. Hydrogel has been successfully used for the delivery of both anticancer and antimicrobial drugs. The developed material shows excellent biocompatibility and antioxidant activity in vitro. The scratch assay for in vitro wound healing activity reveals their higher potential to repair the damaged cells in comparison to control.


Assuntos
Anti-Infecciosos/administração & dosagem , Portadores de Fármacos , Nanopartículas , Taninos/administração & dosagem , Polímeros , Chá , Cicatrização
13.
Biofouling ; 33(10): 881-891, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29047302

RESUMO

Amniotic membrane (AM) is frequently used in ophthalmologic surgery for rapid ocular surface reconstruction. Sometimes it may create a major problem with associated infections after biofilm formation over the membrane. To overcome this problem, AM was coated with the antimicrobial peptide clavanin A. The antifungal activity of clavanin A in the native and self-assembled form was determined against the common ocular surface pathogens Candida albicans, Aspergillus fumigatus, Alternaria sp. and Fusarium sp. Biofilm formation over the coated surface was significantly reduced in comparison with the uncoated membrane. The coated membrane revealed effectiveness in terms of biocompatibility, cell attachment colonization when tested in non-cancerous 3T3 and human embryonic kidney (HEK)-293 cell lines. Clavanin A-coated AM also exhibited excellent physical, morphological and antifungal characteristics, indicating potential applicability for ocular surface infection control.


Assuntos
Âmnio/microbiologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas Sanguíneas/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/fisiologia , Âmnio/transplante , Antibacterianos , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/fisiologia , Candida albicans/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Fusarium/fisiologia , Células HEK293 , Humanos
14.
J Med Food ; 20(10): 1031-1038, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28661772

RESUMO

Long-term treatment with several conventional antibiotics can cause harmful side effects that can be alleviated by antioxidant therapy. Phenolic compounds (PCs) are the best source of antioxidants, and to identify the most suitable polyphenols for use as a supportive supplement during antibiotic therapy, this study screened a series of PCs to establish their antibacterial potential, including their biofilm and ß-lactamase inhibition activity. Several PCs were tested for antibacterial activity against Staphylococcus epidermidis and Pseudomonas aeruginosa. Among them, tannic acid, epigallocatechin gallate, rutin, and eugenol showed the highest antibacterial activity. Epigallocatechin gallate, tannic acid, quercetin, and epicatechin inhibited a significant level of ß-lactamase activity. Tannic acid and epigallocatechin gallate presented the highest ß-lactamase inhibition potential in both in vitro and in silico analysis. In the present work, these two PCs were the most active agents, presenting both antibacterial activity and ß-lactamase and biofilm inhibition ability.


Assuntos
Antibacterianos/farmacologia , Fenóis/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fenóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
15.
Sci Rep ; 7: 46412, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401944

RESUMO

Lignin, one of the most abundant renewable feedstock, is used to develop a biocompatible hydrogel as anti-infective ointment. A hydrophilic polyoxazoline chain is grafted through ring opening polymerization, possess homogeneous spherical nanoparticles of 10-15 nm. The copolymer was covalently modified with triazole moiety to fortify the antimicrobial and antibiofilm activities. The hydrogel was capable of down regulating the expression level of IL-1ß in LPS induced macrophage cells, and to cause significant reduction of iNOS production. It supported cellular anti-inflammatory activity which was confirmed with luciferase assay, western blot, and NF-κB analysis. This novel lignin-based hydrogel tested in-vivo has shown the abilities to prevent infection of burn wound, aid healing, and an anti-inflammatory dressing material. The hydrogel reported here provides a new material platform to introduce a cost-effective and efficient ointment option after undertaking further work to look at its use in the area of clinical practice.


Assuntos
Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Pomadas/uso terapêutico , Triazóis/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Anti-Infecciosos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lignina/administração & dosagem , Lignina/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Pomadas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Triazóis/administração & dosagem
16.
Front Biosci (Elite Ed) ; 8(3): 450-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27100351

RESUMO

Probiotics are unique bacteria that offer several therapeutic benefits to human beings when administered in optimum amounts. Probiotics are able to produce antimicrobial substances, which stimulate the body's immune responses. Here, we review in detail the anti-infective peptides derived from probiotics and their potential immunomodulatory and anti-inflammatory activities, including a major role in cross-talk between probiotics and gut microbiota under adverse conditions. Insights from the engineered cell surface of probiotics may provide novel anti-infective therapy by heterologous expression of receptor peptides of bacterial toxins. It may be possible to use antigenic peptides from viral pathogens as live vaccines. Another possibility is to generate antiviral peptides that bind directly to virus particles, while some peptides exert anti-inflammatory and anticancer effects. Some extracellular polymeric substances might serve as anti-infective peptides. These avenues of treatment have remained largely unexplored to date, despite their potential in generating powerful anti-inflammatory and anti-infective products.


Assuntos
Microbioma Gastrointestinal , Probióticos/metabolismo , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/uso terapêutico , Bacteriocinas/metabolismo , Homeostase , Humanos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/fisiologia , Probióticos/química , Probióticos/uso terapêutico
17.
Curr Microbiol ; 72(6): 733-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26897126

RESUMO

A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.


Assuntos
Proteínas de Bactérias/genética , Cupriavidus/genética , Hidroxibenzoatos/metabolismo , Mimosa/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Bactérias/metabolismo , Cupriavidus/isolamento & purificação , Cupriavidus/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidroxibenzoatos/química , Espectrometria de Massas , Mimosa/química , Mimosa/metabolismo , Nódulos Radiculares de Plantas/química , Nódulos Radiculares de Plantas/microbiologia
18.
Nanomedicine (Lond) ; 10(10): 1643-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26008197

RESUMO

Bacteria resistant against various antimicrobial compounds have emerged in many countries, and the age of resistance has just started. Among the more promising novel antimicrobial compounds on which current research is focusing are the antimicrobial peptides (AMPs). These are often less susceptible to bacterial resistance since multiple modifications in the cellular membranes, cell wall and metabolism are required to reduce their effectiveness. Most likely, the use of pure AMPs will be insufficient for controlling pathogenic bacteria, and innovative approaches are required to employ AMPs in new antibiotic treatments. Therefore, here we review novel bionanotechnological approaches, including nanofibers, nanoparticles and magnetic particles for effectively using AMPs in fighting infectious diseases.


Assuntos
Antibacterianos/administração & dosagem , Nanoestruturas , Peptídeos/administração & dosagem , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/química
19.
J Cancer Res Ther ; 11(1): 105-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25879346

RESUMO

OBJECTIVE: To study the cytotoxic potency of self-assembled Ruthenium(II)-NHC complexes with 2,6-di-(N-methylimidazolylidene/benzimidazolylidene)pyrazine ligands. MATERIALS AND METHODS: Ru(II)-N-heterocyclic (Ru-NHC) complexes, Bis-[2,6-di-(N-methylimidazol-2-ylidene)pyrazine]ruthenium(II) hexaflurophosphate (3), Bis-[2,6-di-(N-methylbenzimidazol-2-ylidene)pyrazine]ruthenium(II) hexaflurophosphate (4) have been synthesized from corresponding ligands 2,6-di-(N-methylimidazolium)pyrazine dichloride (1); 2,6-di-(N-methylbenzimidazolium)pyrazine dichloride (2). Complexes were studied to determine their pro-apoptotic activity against HCT15 and Hep2 cell lines, and antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans. RESULTS: Both, complex 3 and 4, formed a nanosphere structure in aqueous growth medium. Cytotoxicity study revealed that complex 3 was more effective than complex 4. Complexes mainly target cellular DNA and bacterial cell wall. CONCLUSION: This is the first report on the formation of nanoball structure of Ru(II)-NHC complexes. Thus, complex 3 provides a new insight to develop antitumor or antimicrobial drug.


Assuntos
Compostos Heterocíclicos/química , Compostos Heterocíclicos/toxicidade , Pirazinas/química , Pirazinas/toxicidade , Rutênio/química , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Heterocíclicos/síntese química , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanoestruturas/ultraestrutura
20.
FASEB J ; 29(8): 3315-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921828

RESUMO

Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability.


Assuntos
Antifúngicos/farmacologia , Gastrópodes/metabolismo , Moluscos/metabolismo , Peptídeos/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dicroísmo Circular/métodos , Feminino , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA