Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 36(10): 1392-1411, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28331029

RESUMO

Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.


Assuntos
Autofagossomos/metabolismo , Autofagia , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Relacionadas à Autofagia/análise , Células Cultivadas , Drosophila , Humanos , Proteínas de Membrana/análise , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética
2.
Mov Disord ; 31(7): 1041-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27090768

RESUMO

BACKGROUND: ECHS1 encodes a mitochondrial enzyme involved in the degradation of essential amino acids and fatty acids. Recently, ECHS1 mutations were shown to cause a new severe metabolic disorder presenting as Leigh or Leigh-like syndromes. The objective of this study was to describe a family with 2 siblings affected by different dystonic disorders as a resulting phenotype of ECHS1 mutations. METHODS: Clinical evaluation, MRI imaging, genome-wide linkage, exome sequencing, urine metabolite profiling, and protein expression studies were performed. RESULTS: The first sibling is 17 years old and presents with generalized dystonia and severe bilateral pallidal MRI lesions after 1 episode of infantile subacute metabolic encephalopathy (Leigh-like syndrome). In contrast, the younger sibling (15 years old) only suffers from paroxysmal exercise-induced dystonia and has very mild pallidal MRI abnormalities. Both patients carry compound heterozygous ECHS1 mutations: c.232G>T (predicted protein effect: p.Glu78Ter) and c.518C>T (p.Ala173Val). Linkage analysis, exome sequencing, cosegregation, expression studies, and metabolite profiling support the pathogenicity of these mutations. Expression studies in patients' fibroblasts showed mitochondrial localization and severely reduced levels of ECHS1 protein. Increased urinary S-(2-carboxypropyl)cysteine and N-acetyl-S-(2-carboxypropyl)cysteine levels, proposed metabolic markers of this disorder, were documented in both siblings. Sequencing ECHS1 in 30 unrelated patients with paroxysmal dyskinesias revealed no further mutations. CONCLUSIONS: The phenotype associated with ECHS1 mutations might be milder than reported earlier, compatible with prolonged survival, and also includes isolated paroxysmal exercise-induced dystonia. ECHS1 screening should be considered in patients with otherwise unexplained paroxysmal exercise-induced dystonia, in addition to those with Leigh and Leigh-like syndromes. Diet regimens and detoxifying agents represent potential therapeutic strategies. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Enoil-CoA Hidratase/deficiência , Adolescente , Enoil-CoA Hidratase/genética , Exercício Físico , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA