Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745307

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-9 , Camundongos Endogâmicos C57BL , Microglia , Sinapses , Fator de Necrose Tumoral alfa , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Interleucina-9/metabolismo , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
2.
Parkinsonism Relat Disord ; 122: 106071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432021

RESUMO

In Parkinson's disease (PD), neuroinflammation may be involved in the pathogenesis of mood disorders, contributing to the clinical heterogeneity of the disease. The cerebrospinal fluid (CSF) levels of interleukin (IL)-1ß, IL-2, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, interferon (IFN)γ, macrophage inflammatory protein 1-alpha (MIP-1a), MIP-1b, granulocyte colony stimulating factor (GCSF), eotaxin, tumor necrosis factor (TNF), and monocyte chemoattractant protein 1 (MCP-1), were assessed in 45 newly diagnosed and untreated PD patients and in 44 control patients. Spearman's correlations were used to explore possible associations between CSF cytokines and clinical variables including mood. Benjamini-Hochberg (B-H) correction for multiple comparisons was applied. Linear regression was used to test significant associations correcting for other clinical variables. In PD patients, higher CSF concentrations of the inflammatory molecules IL-6, IL-9, IFNγ, and GCSF were found (all B-H corrected p < 0.02). Significant associations were found between BDI-II and the levels of IL-6 (Beta = 0.438; 95%CI 1.313-5.889; p = 0.003) and IL-8 (Beta = 0.471; 95%CI 0.185-0.743; p = 0.002). Positive associations were also observed between STAI-Y state and both IL-6 (Beta = 0.452; 95%CI 1.649-7.366; p = 0.003), and IL-12 (Beta = 0.417; 95%CI 2.238-13.379; p = 0.007), and between STAI-Y trait and IL-2 (Beta = 0.354; 95%CI 1.923-14.796; p = 0.012), IL-6 (Beta = 0.362; 95%CI 0.990-6.734; p = 0.01), IL-8 (Beta = 0.341; 95%CI 0.076-0.796; p = 0.019), IL-12 (Beta = 0.328; 95%CI 0.975-12.135; p = 0.023), and IL-17 (Beta = 0.334; 95CI 0.315-4.455; p = 0.025). An inflammatory CSF milieu may be associated with depression and anxiety in the early phases of PD, supporting a role of neuroinflammation in the pathogenesis of mood disturbances.


Assuntos
Citocinas , Transtornos do Humor , Doença de Parkinson , Humanos , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Citocinas/líquido cefalorraquidiano , Transtornos do Humor/líquido cefalorraquidiano , Transtornos do Humor/etiologia , Transtornos do Humor/diagnóstico , Inflamação/líquido cefalorraquidiano , Doenças Neuroinflamatórias/líquido cefalorraquidiano , Doenças Neuroinflamatórias/etiologia
3.
Genes (Basel) ; 13(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35627281

RESUMO

(1) Background: The clinical course of multiple sclerosis (MS) is critically influenced by the expression of different pro-inflammatory and anti-inflammatory cytokines. Interleukin 6 (IL-6) represents a major inflammatory molecule previously associated with exacerbated disease activity in relapsing remitting MS (RR-MS); however, the role of single-nucleotide polymorphisms (SNPs) in the IL-6 gene has not been fully elucidated in MS. (2) Methods: We explored in a cohort of 171 RR-MS patients, at the time of diagnosis, the associations between four IL-6 SNPs (rs1818879, rs1554606, rs1800797, and rs1474347), CSF inflammation, and clinical presentation. (3) Results: Using principal component analysis and logistic regression analysis we identified an association between rs1818879, radiological activity, and a set of cytokines, including the IL-1ß, IL-9, IL-10, and IL-13. No significant associations were found between other SNPs and clinical or inflammatory parameters. (4) Conclusions: The association between the rs1818879 polymorphism and subclinical neuroinflammatory activity suggests that interindividual differences in the IL-6 gene might influence the immune activation profile in MS.


Assuntos
Interleucina-6/genética , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Citocinas/genética , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/genética , Polimorfismo de Nucleotídeo Único
4.
Brain Behav Immun ; 98: 13-27, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391817

RESUMO

Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1ß), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.


Assuntos
Pessoas com Deficiência , Encefalomielite Autoimune Experimental , Transtornos Motores , Animais , Hipocampo , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL
5.
Cells ; 9(10)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066433

RESUMO

Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical and experimental studies delineate abnormal expression of specific cytokines over the course of the disease. One major cytokine that has been shown to play a pivotal role in MS is tumor necrosis factor (TNF). TNF is a pleiotropic cytokine regulating many physiological and pathological functions of both the immune system and the central nervous system (CNS). Convincing evidence from studies in human and experimental MS have demonstrated the involvement of TNF in various pathological hallmarks of MS, including immune dysregulation, demyelination, synaptopathy and neuroinflammation. However, due to the complexity of TNF signaling, which includes two-ligands (soluble and transmembrane TNF) and two receptors, namely TNF receptor type-1 (TNFR1) and type-2 (TNFR2), and due to its cell- and context-differential expression, targeting the TNF system in MS is an ongoing challenge. This review summarizes the evidence on the pathophysiological role of TNF in MS and in different MS animal models, with a special focus on pharmacological treatment aimed at controlling the dysregulated TNF signaling in this neurological disorder.


Assuntos
Esclerose Múltipla/etiologia , Esclerose Múltipla/terapia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encéfalo/fisiopatologia , Humanos , Sistema Imunitário/fisiopatologia , Modelos Biológicos , Esclerose Múltipla/fisiopatologia , Transdução de Sinais
6.
Neurorehabil Neural Repair ; 33(10): 825-835, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31431121

RESUMO

Background: Synaptic plasticity helps in reducing the clinical expression of brain damage and represents a useful mechanism to compensate the negative impact of new brain lesions in multiple sclerosis (MS). Inflammation, altering synaptic plasticity, could negatively influence the disease course in relapsing-remitting MS (RR-MS). Objective: In the present study, we explored whether interleukin (IL)-6, a major proinflammatory cytokine involved in MS pathogenesis, alters synaptic plasticity and affects the ability to compensate for ongoing brain damage. Methods: The effect of IL-6 incubation on long-term potentiation (LTP) induction was explored in vitro, in mice hippocampal slices. We also explored the correlation between the cerebrospinal fluid (CSF) levels of this cytokine and the LTP-like effect induced by the paired associative stimulation (PAS) in a group of RR-MS patients. Finally, we examined the correlation between the CSF levels of IL-6 at the time of diagnosis and the prospective disease activity in a cohort of 150 RR-MS patients. Results:In vitro LTP induction was abolished by IL-6. Consistently, in patients with MS, a negative correlation emerged between IL-6 CSF concentrations and the effect of PAS. In MS patients, longer disease duration before diagnosis was associated with higher IL-6 CSF concentrations. In addition, elevated CSF levels of IL-6 were associated with greater clinical expression of new inflammatory brain lesions, unlike in patients with low or absent IL-6 concentrations, who had a better disease course. Conclusions: IL-6 interfering with synaptic plasticity mechanisms may impair the ability to compensate the clinical manifestation of new brain lesions in RR-MS patients.


Assuntos
Progressão da Doença , Potencial Evocado Motor , Hipocampo , Interleucina-6/metabolismo , Potenciação de Longa Duração , Esclerose Múltipla , Plasticidade Neuronal , Adulto , Animais , Aprendizagem por Associação , Potencial Evocado Motor/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Interleucina-6/líquido cefalorraquidiano , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Plasticidade Neuronal/fisiologia , Estimulação Magnética Transcraniana
7.
Front Neurol ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761069

RESUMO

Introduction: Disease course of multiple sclerosis (MS) is negatively influenced by proinflammatory molecules released by activated T and B lymphocytes and local immune cells. The endovanilloid system plays different physiological functions, and preclinical data suggest that transient receptor potential vanilloid type 1 (TRPV1) could modulate neuroinflammation in this disorder. Methods: The effect of TRPV1 activation on the release of two main proinflammatory cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, was explored in activated microglial cells. Furthermore, in a group of 132 MS patients, the association between the cerebrospinal fluid (CSF) levels of TNF and IL-6 and a single nucleotide polymorphisms (SNP) influencing TRPV1 protein expression and function (rs222747) was assessed. Results: In in vitro experiments, TRPV1 stimulation by capsaicin significantly reduced TNF and IL-6 release by activated microglial cells. Moreover, the anti-inflammatory effect of TRPV1 activation was confirmed by another TRPV1 agonist, the resiniferatoxin (RTX), whose effects were significantly inhibited by the TRPV1 antagonist, 5-iodoresiniferatoxin (5-IRTX). Vice versa, BV2 pre-treatment with 5-IRTX increased the inflammatory response induced by LPS. Moreover, in MS patients, a significant association emerged between TRPV1 SNP rs222747 and CSF TNF levels. In particular, the presence of a G allele, known to result in increased TRPV1 protein expression and function, was associated to lower CSF levels of TNF. Conclusions: Our results indicate that TRPV1 influences central inflammation in MS by regulating cytokine release by activated microglial cells. The modulation of the endovanilloid system may represent a useful approach to contrast neuroinflammation in MS.

8.
Dev Cell ; 47(5): 592-607.e6, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513302

RESUMO

Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HeLa , Homeostase , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Proteína Fosfatase 2/metabolismo , Linfócitos T/citologia
9.
J Neurol ; 265(11): 2540-2547, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167879

RESUMO

BACKGROUND: Clinical deterioration of relapsing-remitting MS (RR-MS) patients reflects not only the number and severity of overt inflammatory and demyelinating episodes, but also subtle central damage caused by persistent exposure to inflammatory molecules. OBJECTIVE: To explore the correlation between levels of CSF inflammatory molecules at the time of diagnosis and both demographic and clinical characteristics of a large sample of RR-MS patients, as well as the predictive value of cytokine levels on their prospective disease course. METHODS: In 205 patients diagnosed with RR-MS, we measured at the time of diagnosis the CSF levels of inflammatory molecules. Clinical and MRI evaluation was collected at the time of CSF withdrawal and during a median follow-up of 3 years. RESULTS: The time interval between the first anamnestic episode of focal neurological dysfunction and RR-MS diagnosis was the main factor associated with high CSF levels of IL-6 and IL-8. Furthermore, elevated CSF levels of these cytokines correlated with enhanced risk of clinical and radiological disease reactivation, switch to second-line treatments, and with disability progression in the follow-up. CONCLUSIONS: Delayed diagnosis and treatment initiation are associated with higher CSF levels of IL-6 and IL-8 in RR-MS, leading to worsening disease course and poor response to treatments.


Assuntos
Interleucina-6/líquido cefalorraquidiano , Interleucina-8/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/terapia , Adulto , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/imunologia , Prognóstico , Estudos Prospectivos , Tempo para o Tratamento
10.
Neural Plast ; 2018: 8430123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29861718

RESUMO

Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1ß (IL-1ß) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-ß and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1ß and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.


Assuntos
Encefalite/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Interleucina-1beta/metabolismo , Esclerose Múltipla/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalite/patologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Esclerose Múltipla/patologia
11.
J Neuroimmune Pharmacol ; 8(3): 651-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23370991

RESUMO

Glutamate-mediated excitotoxicity is supposed to induce neurodegeneration in multiple sclerosis (MS). Glatiramer acetate (GA) is an immunomodulatory agent used in MS treatment with potential neuroprotective action. Aim of the present study was to investigate whether GA has effects on glutamate transmission alterations occurring in experimental autoimmune encephalomyelitis (EAE), to disclose a possible mechanism of GA-induced neuroprotection in this mouse model of MS. Single neuron electrophysiological recordings and immunofluorescence analysis of microglia activation were performed in the striatum of EAE mice, treated or not with GA, at different stages of the disease. GA treatment was able to reverse the tumor necrosis factor-α (TNF-α)-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents (EPSCs) of EAE mice. Incubation of striatal slices of control animals with lymphocytes taken from EAE mice treated with GA failed to replicate such an anti-glutamatergic effect, while activated microglial cells stimulated with GA in vitro mimicked the effect of GA treatment of EAE mice. Consistently, EAE mice treated with GA had less microglial activation and less TNF-α expression than untreated EAE animals. Furthermore, direct application of GA to EAE slices replicated the in vivo protective activity of GA. Our results show that GA is neuroprotective against glutamate toxicity independently of its peripheral immunodulatory action, and through direct modulation of microglial activation and TNF-α release in the grey matter of EAE and possibly of MS brains.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Imunossupressores/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Sinapses/patologia , Animais , Células Cultivadas , Feminino , Acetato de Glatiramer , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos
12.
Exp Neurol ; 237(2): 296-303, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22836148

RESUMO

Multiple sclerosis (MS) causes a variety of motor and sensory deficits and it is also associated with mood disturbances. It is unclear if anxiety and depression in MS entirely reflect a subjective reaction to a chronic disease causing motor disability or rather depend on specific effects of neuroinflammation in neuronal circuits. To answer this question, behavioral, electrophysiological, and immunofluorescence experiments were performed in mice with experimental autoimmune encephalomyelitis (EAE), which models MS in mice. First, we observed high anxiety indexes in EAE mice, preceding the appearance of motor defects. Then, we demonstrated that tumor necrosis factor α (TNF-α) has a crucial role in anxiety associated with neuroinflammation. In fact, intracerebroventricular (icv) administration of etanercept, an inhibitor of TNF-α signaling, resulted in anxiolytic-like effects in EAE-mice. Accordingly, icv injection of TNF-α induced per se overt anxious behavior in control mice. Moreover, we propose the striatum as one of the brain regions potentially involved in EAE anxious behavior. We observed that before disease onset EAE striatum presents elevated TNF-α levels and strong activated microglia, early signs of inflammation associated with alterations of striatal excitatory postsynaptic currents (EPSCs). Interestingly, etanercept corrected the synaptic defects of pre-symptomatic EAE mice while icv injection of TNF-α in non-EAE mice altered EPSCs, thus mimicking the synaptic effects of EAE. In conclusion, anxiety characterizes EAE course since the very early phases of the disease. TNF-α released from activated microglia mediates this effect likely through the modulation of striatal excitatory synaptic transmission.


Assuntos
Ansiedade/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/psicologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ansiedade/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Etanercepte , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Imunofluorescência , Imunoglobulina G/farmacologia , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Esclerose Múltipla/metabolismo , Esclerose Múltipla/psicologia , Técnicas de Patch-Clamp , Receptores do Fator de Necrose Tumoral
13.
PLoS One ; 6(9): e24261, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912682

RESUMO

BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R) signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT). An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-ß-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. CONCLUSIONS: These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.


Assuntos
Acetilcolina/metabolismo , Distonia/metabolismo , Distonia/patologia , Interneurônios/metabolismo , Neostriado/crescimento & desenvolvimento , Neostriado/patologia , Receptores de Dopamina D2/metabolismo , Animais , Cálcio/metabolismo , Distonia/genética , Distonia/fisiopatologia , Fenômenos Eletrofisiológicos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Interneurônios/patologia , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais
14.
PLoS One ; 6(6): e20791, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695168

RESUMO

The adult mammalian central nervous system has a limited ability to establish new connections and to recover from traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization. To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43 (also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO.


Assuntos
Axônios/patologia , Cerebelo/patologia , Proteína GAP-43/metabolismo , Inativação Gênica , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Neurogênese , Animais , Atrofia , Lentivirus/genética , Camundongos , Células PC12 , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar
15.
Neurobiol Dis ; 43(3): 669-77, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21672630

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) channels are involved in several inflammatory diseases. However, their action is still controversial, and both pro-inflammatory and anti-inflammatory roles have been described. We used a strain of TRPV1-KO mice to characterize the role of these channels in experimental autoimmune encephalomyelitis (EAE), which models multiple sclerosis (MS) in mice. EAE mice showed higher lethality in the peak phase of the disease and a better recovery of the surviving animals in the chronic stages, compared to their wild-type (WT) counterparts. By means of whole-cell patch clamp experiments in corticostriatal brain slices, we found that the absence of TRPV1 channels exacerbated the defect of glutamate transmission occurring in the peak phase of EAE, and attenuated the alterations of GABA synapses in the chronic phase of EAE, thus paralleling the dual effects of TRPV1-KO on the motor deficits of EAE mice. Furthermore, in slices from non-EAE mice, we found that genetic or pharmacological blockade of TRPV1 channels enhanced the synaptic effects of tumor necrosis factor α (TNF-α) on glutamate-mediated excitatory postsynaptic currents, and prevented the action of interleukin 1ß (IL-1ß) on GABAergic inhibitory postsynaptic currents. Together, our results suggest that TRPV1 channels contrast TNF-α-mediated synaptic deficits in the peak phase of EAE and, in the chronic stages, enhance IL-1ß-induced GABAergic defects. The opposing interplay with the synaptic actions of the two major pro-inflammatory cytokines might explain the bimodal effects of TRPV1 ablation on the motor deficits of EAE, and suggests that the inflammatory milieu determines whether TRPV1 channels exert preferentially aversive or protective effects on neurons during neuroinflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/prevenção & controle , Interleucina-1beta/fisiologia , Sinapses/fisiologia , Canais de Cátion TRPV/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Encefalomielite Autoimune Experimental/patologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/genética , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interleucina-1beta/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Técnicas de Cultura de Órgãos , Sinapses/genética , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Regulação para Cima/genética
16.
Brain Behav Immun ; 25(5): 947-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20940040

RESUMO

Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients.


Assuntos
Corpo Estriado/fisiopatologia , Encefalomielite Autoimune Experimental/fisiopatologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Western Blotting , Células Cultivadas , Corpo Estriado/metabolismo , Citocinas/fisiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/fisiologia
17.
Neurobiol Dis ; 38(3): 434-45, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20227500

RESUMO

DYT1 dystonia is an inherited disease linked to mutation in the TOR1A gene encoding for the protein torsinA. Although the mechanism by which this genetic alteration leads to dystonia is unclear, multiple lines of clinical evidence suggest a link between dystonia and a reduced dopamine D2 receptor (D2R) availability. Based on this evidence, herein we carried out a comprehensive analysis of electrophysiological, behavioral and signaling correlates of D2R transmission in transgenic mice with the DYT1 dystonia mutation. Electrophysiological recordings from nigral dopaminergic neurons showed a normal responsiveness to D2-autoreceptor function. Conversely, postsynaptic D2R function in hMT mice was impaired, as suggested by the inability of a D2R agonist to re-establish normal corticostriatal synaptic plasticity and supported by the reduced sensitivity to haloperidol-induced catalepsy. Although an in situ hybridization analysis showed normal D1R and D2R mRNA expression levels in the striata of hMT mice, we found a significant decrease of D2R protein, coupled to a reduced ability of D2Rs to activate their cognate Go/i proteins. Of relevance, we found that pharmacological blockade of adenosine A2A receptors (A2ARs) fully restored the impairment of synaptic plasticity observed in hMT mice. Together, our findings demonstrate an important link between torsinA mutation and D2R dysfunction and suggest that A2AR antagonism is able to counteract the deficit in D2R-mediated transmission observed in mutant mice, opening new perspectives for the treatment of this movement disorder.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Distonia/tratamento farmacológico , Distonia/fisiopatologia , Chaperonas Moleculares/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Fármacos do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Distonia/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
18.
FEBS Lett ; 510(1-2): 50-6, 2002 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-11755530

RESUMO

Neurotrophins support neuronal survival, development, and plasticity through processes requiring gene expression. We studied how vgf target gene transcription is mediated by a critical promoter region containing E-box, CCAAT and cAMP response element (CRE) sites. The p300 acetylase was present in two distinct protein complexes bound to this region. One complex, containing HEB (ubiquitous basic helix-loop-helix (bHLH)), bound the promoter in non-neuronal cells and was involved in repressing vgf expression. Neurotrophin-dependent transcription was mediated by the second complex, specific for neuronal cells, which included CRE binding protein and MASH1 (neuro-specific bHLH), bound the CCAAT motif, and was target of neurotrophin signalling. The interaction, mediated by p300, of different transcription factors may add specificity to the neurotrophin response.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Sequências Hélice-Alça-Hélice , Fator de Crescimento Neural/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células 3T3 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteína p300 Associada a E1A , Camundongos , Fator de Crescimento Neural/farmacologia , Fatores de Crescimento Neural , Neuropeptídeos , Proteínas Nucleares/fisiologia , Células PC12 , Fosforilação , Regiões Promotoras Genéticas , Ratos , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA