Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2021: 6685612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763173

RESUMO

Excessive production of reactive oxygen species (ROS) and the ensuing oxidative stress are instrumental in all phases of atherosclerosis. Despite the major achievements in understanding the regulatory pathways and molecular sources of ROS in the vasculature, the specific detection and quantification of ROS in experimental models of disease remain a challenge. We aimed to develop a reliable and straightforward imaging procedure to interrogate the ROS overproduction in the vasculature and in various organs/tissues in atherosclerosis. To this purpose, the cell-impermeant ROS Brite™ 700 (RB700) probe that produces bright near-infrared fluorescence upon ROS oxidation was encapsulated into VCAM-1-targeted, sterically stabilized liposomes (VLp). Cultured human endothelial cells (EC) and macrophages (Mac) were used for in vitro experiments. C57BL6/J and ApoE-/- mice were randomized to receive normal or high-fat, cholesterol-rich diet for 10 or 32 weeks. The mice received a retroorbital injection with fluorescent tagged VLp incorporating RB700 (VLp-RB700). After two hours, the specific signals of the oxidized RB700 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-DSPE), inserted into liposome bilayers, were measured ex vivo in the mouse aorta and various organs by high-resolution fluorescent imaging. VLp-RB700 was efficiently taken up by cultured human EC and Mac, as confirmed by fluorescence microscopy and spectrofluorimetry. After systemic administration in atherosclerotic ApoE-/- mice, VLp-RB700 were efficiently concentrated at the sites of aortic lesions, as indicated by the augmented NBD fluorescence. Significant increases in oxidized RB700 signal were detected in the aorta and in the liver and kidney of atherosclerotic ApoE-/- mice. RB700 encapsulation into sterically stabilized VCAM-1-sensitive Lp could be a novel strategy for the qualitative and quantitative detection of ROS in the vasculature and various organs and tissues in animal models of disease. The accurate and precise detection of ROS in experimental models of disease could ease the translation of the results to human pathologies.


Assuntos
Aorta/patologia , Aterosclerose/patologia , Corantes Fluorescentes/química , Imagem Óptica , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Apolipoproteínas E/deficiência , Morte Celular , Fluorescência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/química , Microscopia Intravital , Ferro/química , Lipossomos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo , Espectroscopia de Luz Próxima ao Infravermelho , Células THP-1 , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima
2.
Redox Biol ; 28: 101338, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634818

RESUMO

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are instrumental in all inflammatory phases of atherosclerosis. Dysregulated histone deacetylase (HDAC)-related epigenetic pathways have been mechanistically linked to alterations in gene expression in experimental models of cardiovascular disorders. Hitherto, the relation between HDAC and Nox in atherosclerosis is not known. We aimed at uncovering whether HDAC plays a role in mediating Nox up-regulation, oxidative stress, inflammation, and atherosclerotic lesion progression. Human non-atherosclerotic and atherosclerotic arterial samples, ApoE-/- mice, and in vitro polarized monocyte-derived M1/M2-macrophages (Mac) were examined. Male ApoE-/- mice, maintained on normal or high-fat, cholesterol-rich diet, were randomized to receive 10 mg/kg suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor, or its vehicle, for 4 weeks. In the human/animal studies, real-time PCR, Western blot, lipid staining, lucigenin-enhanced chemiluminescence assay, and enzyme-linked immunosorbent assay were employed. The protein levels of class I, class IIa, class IIb, and class IV HDAC isoenzymes were significantly elevated both in human atherosclerotic tissue samples and in atherosclerotic aorta of ApoE-/- mice. Treatment of ApoE-/- mice with SAHA reduced significantly the extent of atherosclerotic lesions, and the aortic expression of Nox subtypes, NADPH-stimulated ROS production, oxidative stress and pro-inflammatory markers. Significantly up-regulated HDAC and Nox subtypes were detected in inflammatory M1-Mac. In these cells, SAHA reduced the Nox1/2/4 transcript levels. Collectively, HDAC inhibition reduced atherosclerotic lesion progression in ApoE-/- mice, possibly by intertwined mechanisms involving negative regulation of Nox expression and inflammation. The data propose that HDAC-oriented pharmacological interventions could represent an effective therapeutic strategy in atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , NADPH Oxidases/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Biópsia , LDL-Colesterol/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epigênese Genética , Humanos , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Oxirredução , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Espécies Reativas de Oxigênio/metabolismo
3.
Oxid Med Cell Longev ; 2019: 3201062, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565149

RESUMO

Histone acetylation plays a major role in epigenetic regulation of gene expression. Monocyte-derived macrophages express functional NADPH oxidase 5 (Nox5) that contributes to oxidative stress in atherogenesis. The mechanisms of Nox5 regulation are not entirely elucidated. The aim of this study was to investigate the expression pattern of key histone acetyltransferase subtypes (p300, HAT1) in human atherosclerosis and to determine their role in mediating the upregulation of Nox5 in macrophages under inflammatory conditions. Human nonatherosclerotic and atherosclerotic tissue samples were collected in order to determine the expression of p300 and HAT1 isoforms, H3K27ac, and Nox5. In vitro determinations were done on human macrophages exposed to lipopolysaccharide in the absence or presence of histone acetyltransferase inhibitors. Western blot, immunohistochemistry, immunofluorescence, real-time PCR, transfection, and chromatin immunoprecipitation assay were employed. The protein levels of p300 and HAT1 isoforms, H3K27ac, and Nox5 were found significantly elevated in human atherosclerotic specimens. Immunohistochemistry/immunofluorescence staining revealed that p300, HAT1, H3K27ac, H3K9ac, and Nox5 proteins were colocalized in the area of CD45+/CD68+ immune cells and lipid-rich deposits within human atherosclerotic plaques. Lipopolysaccharide induced the levels of HAT1, H3K27ac, H3K9ac, and Nox5 and the recruitment of p300 and HAT1 at the sites of active transcription within Nox5 gene promoter in cultured human macrophages. Pharmacological inhibition of histone acetyltransferase significantly reduced the Nox5 gene and protein expression in lipopolysaccharide-challenged macrophages. The overexpression of p300 or HAT1 enhanced the Nox5 gene promoter activity. The histone acetyltransferase system is altered in human atherosclerosis. Under inflammatory conditions, HAT subtypes control Nox5 overexpression in cultured human macrophages. The data suggest the existence of a new epigenetic mechanism underlying oxidative stress in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteína p300 Associada a E1A/metabolismo , Histona Acetiltransferases/metabolismo , Macrófagos/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Proteína p300 Associada a E1A/genética , Epigênese Genética , Histona Acetiltransferases/genética , Histonas/biossíntese , Histonas/genética , Histonas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , NADPH Oxidase 5/biossíntese , NADPH Oxidase 5/genética , Células THP-1 , Transfecção , Regulação para Cima
4.
Redox Biol ; 5: 358-366, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26133261

RESUMO

NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.


Assuntos
Epigênese Genética , NADPH Oxidases/metabolismo , Fatores de Transcrição/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , NADPH Oxidases/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
5.
Biochem Biophys Res Commun ; 461(1): 172-9, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25871798

RESUMO

Monocytes (Mon) and Mon-derived macrophages (Mac) orchestrate important oxidative and inflammatory reactions in atherosclerosis by secreting reactive oxygen species (ROS) due, in large part, to the upregulated NADPH oxidases (Nox). The Nox enzymes have been extensively investigated in human Mon and Mac. However, the expression and functional significance of the Nox5 subtypes is not known. We aimed at elucidating whether Nox5 is expressed in human Mon and Mac, and examine its potential role in atherosclerosis. Human monocytic THP-1 cell line and CD14(+) Mon were employed to search for Nox5 expression. RT-PCR, Western blot, lucigenin-enhanced chemiluminescence and dihydroethidium assays were utilized to examine Nox5 in these cells. We found that Nox5 transcription variants and proteins are constitutively expressed in THP-1 cells and primary CD14(+) Mon. Silencing of Nox5 protein expression by siRNA reduced the Ca(2+)-dependent Nox activity and the formation of ROS in Mac induced by A23187, a selective Ca(2+) ionophore. Exposure of Mac to increasing concentrations of IFNγ (5-100 ng/ml) or oxidized LDL (5-100 µg/ml) resulted in a dose-dependent increase in Nox5 protein expression and elevation in intracellular Ca(2+) concentration. Immunohistochemical staining revealed that Nox5 is present in CD68(+) Mac-rich area within human carotid artery atherosclerotic plaques. To the best of our knowledge, this is the first evidence that Nox5 is constitutively expressed in human Mon. Induction of Nox5 expression in IFNγ- and oxidized LDL-exposed Mac and the presence of Nox5 in Mac-rich atheroma are indicative of the implication of Nox5 in atherogenesis.


Assuntos
Aterosclerose/enzimologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/enzimologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Humanos , NADPH Oxidase 5
6.
Cell Tissue Res ; 361(2): 593-604, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25722086

RESUMO

High glucose induces vascular smooth muscle cell (SMC) dysfunction by generating oxidative stress attributable, in part, to the up-regulated NADPH oxidases (Nox). We have attempted to elucidate the high-glucose-generated molecular signals that mediate this effect and hypothesize that products of high-glucose-induced lipid peroxidation regulate Nox by activating peroxisome proliferator-activated receptors (PPARs). Human aortic SMCs were exposed to glucose (5.5-25 mM) or 4-hydroxynonenal (1-25 µM, 4-HNE). Lucigenin assay, real-time polymerase chain reaction, western blot, and promoter analyses were employed to investigate Nox. We found that high glucose generated an increase in Nox activity and expression. It also promoted oxidative stress that consequently induced lipid peroxidation, which resulted in the production of 4-HNE. Pharmacological inhibition of Nox activity significantly reduced the formation of high-glucose-induced 4-HNE. Exposure of SMCs to non-cytotoxic concentrations (1-10 µM) of 4-HNE alone mimicked the effect of high glucose incubation, whereas scavenging of 4-HNE by N-acetyl L-cysteine completely abolished both the effects of high glucose and 4-HNE. The latter exerted its effect by activating PPARα and PPARß/δ, but not PPARγ, as assessed pharmacologically by the inhibitory effect of selective antagonists and following the silencing of the expression of these receptors. These new data indicate that 4-HNE, generated following Nox activation, functions as an endogenous activator of PPARα and PPARß/δ. The newly discovered "lipid peroxidation products-PPARs-Nox axis" represents a novel mechanism of Nox regulation and an additional therapeutic target for oxidative stress in diabetes.


Assuntos
Aldeídos/metabolismo , Glucose/metabolismo , Músculo Liso Vascular/citologia , NADPH Oxidases/metabolismo , PPAR alfa/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Aorta/citologia , Aorta/metabolismo , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/genética , Regiões Promotoras Genéticas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA