Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 180: 154-170, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38621600

RESUMO

Bacterial infection remains a significant problem associated with orthopaedic surgeries leading to surgical site infection (SSI). This unmet medical need can become an even greater complication when surgery is due to malignant bone tumor. In the present study, we evaluated in vitro titanium (Ti) implants subjected to gallium (Ga) and silver (Ag)-doped thermochemical treatment as strategy to prevent SSI and improve osteointegration in bone defects caused by diseases such as osteoporosis, bone tumor, or bone metastasis. Firstly, as Ga has been reported to be an osteoinductive and anti-resorptive agent, its performance in the mixture was proved by studying human mesenchymal stem cells (hMSC) and pre-osteoclasts (RAW264.7) behaviour. Then, the antibacterial potential provided by Ag was assessed by resembling "The Race for the Surface" between hMSC and Pseudomonas aeruginosa in two co-culture methods. Moreover, the presence of quorum sensing molecules in the co-culture was evaluated. The results highlighted the suitability of the mixture to induce osteodifferentiation and reduce osteoclastogenesis in vitro. Furthermore, the GaAg surface promoted strong survival rate and retained osteoinduction potential of hMSCs even after bacterial inoculation. Therefore, GaAg-modified titanium may be an ideal candidate to repair bone defects caused by excessive bone resorption, in addition to preventing SSI. STATEMENT OF SIGNIFICANCE: This article provides important insights into titanium for fractures caused by osteoporosis or bone metastases with high incidence in surgical site infection (SSI) because in this situation bacterial infection can become a major disaster. In order to solve this unmet medical need, we propose a titanium implant modified with gallium and silver to improve osteointegration, reduce bone resorption and avoid bacterial infection. For that aim, we study osteoblast and osteoclast behavior with the main novelty focused on the antibacterial evaluation. In this work, we recreate "the race for the surface" in long-term experiments and study bacterial virulence factors (quorum sensing). Therefore, we believe that our article could be of great interest, providing a great impact on future orthopedic applications.


Assuntos
Técnicas de Cocultura , Gálio , Células-Tronco Mesenquimais , Osteogênese , Pseudomonas aeruginosa , Prata , Titânio , Titânio/química , Titânio/farmacologia , Prata/farmacologia , Prata/química , Humanos , Gálio/farmacologia , Gálio/química , Camundongos , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Osteogênese/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Reabsorção Óssea/patologia , Propriedades de Superfície , Células RAW 264.7 , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Bacterianas/prevenção & controle
2.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475352

RESUMO

Soft tissue defects, such as incisional hernia or pelvic organ prolapse, are prevalent pathologies characterized by a tissue microenvironment rich in fragile and dysfunctional fibroblasts. Precision medicine could improve their surgical repair, currently based on polymeric materials. Nonetheless, biomaterial-triggered interventions need first a better understanding of the cell-material interfaces that truly consider the patients' biology. Few tools are available to study the interactions between polymers and dysfunctional soft tissue cells in vitro. Here, we propose polypropylene (PP) as a matrix to create microscale surfaces w/wo functionalization with an HBII-RGD molecule, a fibronectin fragment modified to include an RGD sequence for promoting cell attachment and differentiation. Metal mold surfaces were roughened by shot blasting with aluminum oxide, and polypropylene plates were obtained by injection molding. HBII-RGD was covalently attached by silanization. As a proof of concept, primary abdominal and vaginal wall fasciae fibroblasts from control patients were grown on the new surfaces. Tissue-specific significant differences in cell morphology, early adhesion and cytoskeletal structure were observed. Roughness and biofunctionalization parameters exerted unique and combinatorial effects that need further investigation. We conclude that the proposed model is effective and provides a new framework to inform the design of smart materials for the treatment of clinically compromised tissues.

3.
Front Bioeng Biotechnol ; 11: 1303313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144539

RESUMO

Excessive bone resorption is one of the main causes of bone homeostasis alterations, resulting in an imbalance in the natural remodeling cycle. This imbalance can cause diseases such as osteoporosis, or it can be exacerbated in bone cancer processes. In such cases, there is an increased risk of fractures requiring a prosthesis. In the present study, a titanium implant subjected to gallium (Ga)-doped thermochemical treatment was evaluated as a strategy to reduce bone resorption and improve osteodifferentiation. The suitability of the material to reduce bone resorption was proven by inducing macrophages (RAW 264.7) to differentiate to osteoclasts on Ga-containing surfaces. In addition, the behavior of human mesenchymal stem cells (hMSCs) was studied in terms of cell adhesion, morphology, proliferation, and differentiation. The results proved that the Ga-containing calcium titanate layer is capable of inhibiting osteoclastogenesis, hypothetically by inducing ferroptosis. Furthermore, Ga-containing surfaces promote the differentiation of hMSCs into osteoblasts. Therefore, Ga-containing calcium titanate may be a promising strategy for patients with fractures resulting from an excessive bone resorption disease.

4.
Biomater Adv ; 154: 213654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837906

RESUMO

The Boston keratoprosthesis (BKPro) is a medical device used to restore vision in complicated cases of corneal blindness. This device is composed by a front plate of polymethylmethacrylate (PMMA) and a backplate usually made of titanium (Ti). Ti is an excellent biomaterial with numerous applications, although there are not many studies that address its interaction with ocular cells. In this regard, despite the good retention rates of the BKPro, two main complications compromise patients' vision and the viability of the prosthesis: imperfect adhesion of the corneal tissue to the upside of the backplate and infections. Thus, in this work, two topographies (smooth and rough) were generated on Ti samples and tested with or without functionalization with a dual peptide platform. This molecule consists of a branched structure that links two peptide moieties to address the main complications associated with BKPro: the well-known RGD peptide in its cyclic version (cRGD) as cell pro-adherent motif and the first 11 residues of lactoferrin (LF1-11) as antibacterial motif. Samples were physicochemically characterized, and their biological response was evaluated in vitro with human corneal keratocytes (HCKs) and against the gram-negative bacterial strain Pseudomonas aeruginosa. The physicochemical characterization allowed to verify the functionalization in a qualitative and quantitative manner. A higher amount of peptide was anchored to the rough surfaces. The studies performed using HCKs showed increased long-term proliferation on the functionalized samples. Gene expression was affected by topography and peptide functionalization. Roughness promoted α-smooth muscle actin (α-SMA) overexpression, and the coating notably increased the expression of extracellular matrix components (ECM). Such changes may favour the development of unwanted fibrosis, and thus, corneal haze. In contrast, the combination of the coating with a rough topography decreased the expression of α-SMA and ECM components, which would be desirable for the long-term success of the prosthesis. Regarding the antibacterial activity, the functionalized smooth and rough surfaces promoted the death of bacteria, as well as a perturbation in their wall definition and cellular morphology. Bacterial killing values were 58 % for smooth functionalised and 68 % for rough functionalised samples. In summary, this study suggests that the use of the dual peptide platform with cRGD and LF1-11 could be a good strategy to improve the in vitro and in vivo performance of the rough topography used in the commercial BKPro.


Assuntos
Córnea , Doenças da Córnea , Humanos , Córnea/cirurgia , Titânio/farmacologia , Doenças da Córnea/cirurgia , Próteses e Implantes , Peptídeos , Antibacterianos
5.
Colloids Surf B Biointerfaces ; 203: 111745, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33853003

RESUMO

One possibility to prevent prosthetic infections is to produce biomaterials resistant to bacterial colonization by anchoring membrane active antimicrobial peptides (AMPs) onto the implant surface. In this perspective, a deeper understanding of the mode of action of the immobilized peptides should improve the development of AMP-inspired infection-resistant biomaterials. The aim of the present study was to characterize the bactericidal mechanism against Staphylococcus epidermidis of the AMP BMAP27(1-18), immobilized on titanium disks and on a model resin support, by applying viability counts, Field Emission Scanning Electron Microscopy (FE-SEM), and a fluorescence microplate assay with a membrane potential-sensitive dye. The cytocompatibility to osteoblast-like MG-63 cells was investigated in monoculture and in co-culture with bacteria. The impact of peptide orientation was explored by using N- and C- anchored analogues. On titanium, the ∼50 % drop in bacteria viability and dramatically affected morphology indicate a contact-killing action exerted by the N- and C-immobilized peptides to the same extent. As further shown by the fluorescence assay with the resin-anchored peptides, the bactericidal effect was mediated by rapid membrane perturbation, similar to free peptides. However, at peptide MBC resin equivalents the C-oriented analogue proved more effective with more than 99 % killing and maximum fluorescence increase, compared to half-maximum fluorescence with more than 90 % killing produced by the N-orientation. Confocal microscopy analyses revealed 4-5 times better MG-63 cell adhesion on peptide-functionalized titanium both in monoculture and in co-culture with bacteria, regardless of peptide orientation, thus stimulating further studies on the effects of the immobilized BMAP27(1-18) on osteoblast cells.


Assuntos
Anti-Infecciosos , Staphylococcus epidermidis , Antibacterianos/farmacologia , Peptídeos , Titânio/farmacologia
6.
Colloids Surf B Biointerfaces ; 182: 110317, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323450

RESUMO

Biomaterial-associated infections (BAI) are the major cause of failure of indwelling medical devices. The risk of BAI can end dramatically in the surgical removal of the affected device. Therefore, a major effort must be undertaken to guarantee the permanence of the implant. In this regard, we have developed antimicrobial coatings for tantalum (Ta) implants, using polyhydroxyalkanoates (PHAs) as matrices for carrying an active principle. The dip-coating technique was successfully used for covering solid Ta discs. An original PHA emulsion flow process was developed for the coating of porous Ta structures, specially for the inner surfaces. The complete characterization of the biopolymer coatings, their antibacterial properties, toxicity and biointegration were analyzed. Thus, non-toxic, well-biointegrated homogeneous biopolymer coatings were attained, which showed antibacterial properties. By using biodegradable PHAs, the resulting drug delivery system assured the protection of Ta against bacterial infections for a period of time.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Poli-Hidroxialcanoatos/farmacologia , Próteses e Implantes , Tantálio/química , Anti-Infecciosos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Poli-Hidroxialcanoatos/química , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
7.
ACS Appl Mater Interfaces ; 11(4): 3666-3678, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30607934

RESUMO

Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.


Assuntos
Fibronectinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Titânio/química , Adesão Celular/genética , Adesão Celular/fisiologia , Fibronectinas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação/genética , Osseointegração/genética , Osseointegração/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Colloids Surf B Biointerfaces ; 169: 30-40, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29747028

RESUMO

Strategies to inhibit initial bacterial adhesion are extremely important to prevent infection on biomaterial surfaces. However, the simultaneous attraction of desired eukaryotic cells remains a challenge for successful biomaterial-host tissue integration. Here we describe a method for the development of a trifunctional coating that repels contaminating bacteria, kills those that adhere, and promotes osteoblast adhesion. To this end, titanium surfaces were functionalized by electrodeposition of an antifouling polyethylene glycol (PEG) layer and subsequent binding of a peptidic platform with cell-adhesive and bactericidal properties. The physicochemical characterization of the samples via SEM, contact angle, FTIR and XPS analysis verified the successful binding of the PEG layer and the biomolecules, without altering the morphology and topography of the samples. PEG coatings inhibited protein adsorption and osteoblast-like (SaOS-2) attachment; however, the presence of cell adhesive domains rescued osteoblast adhesion, yielding higher values of cell attachment and spreading compared to controls (p < 0.05). Finally, the antibacterial potential of the coating was measured by live/dead assays and SEM using S. sanguinis as a model of early colonizer in oral biofilms. The presence of PEG layers significantly reduced bacterial attachment on the surfaces (p < 0.05). This antibacterial potential was further increased by the bactericidal peptide, yielding values of bacterial adhesion below 0.2% (p < 0.05). The balance between the risk of infection and the optimal osteointegration of a biomaterial is often described as "the race for the surface", in which contaminating bacteria and host tissue cells compete to colonize the implant. In the present work, we have developed a multifunctional coating for a titanium surface that promotes the attachment and spreading of osteoblasts, while very efficiently inhibits bacterial colonization, thus holding promise for application in bone replacing applications.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Streptococcus sanguis/efeitos dos fármacos , Titânio/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície , Titânio/química , Células Tumorais Cultivadas
9.
Acta Biomater ; 43: 269-281, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27481289

RESUMO

UNLABELLED: Surface modification stands out as a versatile technique to create instructive biomaterials that are able to actively direct stem cell fate. Chemical functionalization of titanium has been used in this work to stimulate the differentiation of human mesenchymal stem cells (hMSCs) into the osteoblastic lineage, by covalently anchoring a synthetic double-branched molecule (PTF) to the metal that allows a finely controlled presentation of peptidic motifs. In detail, the effect of the RGD adhesive peptide and its synergy motif PHSRN is studied, comparing a random distribution of the two peptides with the chemically-tailored disposition within the custom made synthetic platform, which mimics the interspacing between the motifs observed in fibronectin. Contact angle measurement and XPS analysis are used to prove the efficiency of functionalization. We demonstrate that, by rationally designing ligands, stem cell response can be efficiently guided towards the osteogenic phenotype: In vitro, PTF-functionalized surfaces support hMSCs adhesion, with higher cell area and formation of focal contacts, expression of the integrin receptor α5ß1 and the osteogenic marker Runx2, and deposition a highly mineralized matrix, reaching values of mineralization comparable to fibronectin. Our strategy is also demonstrated to be efficient in promoting new bone growth in vivo in a rat calvarial defect. These results highlight the efficacy of chemical control over the presentation of bioactive peptides; such systems may be used to engineer bioactive surfaces with improved osseointegrative properties, or can be easily tuned to generate multi-functional coatings requiring a tailored disposition of the peptidic motifs. STATEMENT OF SIGNIFICANCE: Organic coatings have been proposed as a solution to foster osseointegration of orthopedic implants. Among them, extracellular matrix-derived peptide motifs are an interesting biomimetic strategy to harness cell-surface interactions. Nonetheless, the combination of multiple peptide motifs in a controlled manner is essential to achieve receptor specificity and fully exploit the potentiality of synthetic peptides. Herein, we covalently graft to titanium a double branched molecule to guide stem cell fate in vitro and generate an osseoinductive titanium surface in vivo. Such synthetic ligand allows for the simultaneous presentation of two bioactive motifs, thus is ideal to test the effect of synergic sequences, such as RGD and PHSRN, and is a clear example of the versatility and feasibility of rationally designed biomolecules.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Integrinas/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Actinas/metabolismo , Adsorção , Animais , Cálcio/metabolismo , Bovinos , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Implantes Experimentais , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos Sprague-Dawley , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Titânio/farmacologia , Água/química
10.
J Mater Sci Mater Med ; 27(8): 124, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27318469

RESUMO

Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent.


Assuntos
Antibacterianos/química , Hidroxibutiratos/química , Poliésteres/química , Polietilenoglicóis/química , Titânio/química , Materiais Biocompatíveis/química , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microesferas , Oxigênio/química , Gases em Plasma , Propilaminas/química , Silanos/química , Espectrometria por Raios X , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 6(9): 6525-36, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24673628

RESUMO

Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.


Assuntos
Materiais Biocompatíveis , Peptídeos/química , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA