Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Anormalidades Dentárias/genética , Anormalidades Múltiplas/diagnóstico , Adolescente , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , FenótipoRESUMO
Wiedemann-Steiner syndrome (WDSTS) is a rare genetic disorder including developmental delay/intellectual disability (DD/ID), hypertrichosis cubiti, short stature, and distinctive facial features, caused by mutation in KMT2A gene, which encodes a histone methyltransferase (H3K4) that regulates chromatin-mediated transcription. Different neurodevelopmental phenotypes have been described within the WDSTS spectrum, including a peculiar Autism Spectrum Disorder (ASDs) subtype in some affected individuals. Here, we report a 9-year-old Caucasian male found by next-generation panel sequencing to carry a novel heterozygous de novo KMT2A frameshift variant (NM_001197104.2:c.4433delG; p. Arg1478LeufsTer108). This boy presented a WDSTS phenotype associated with broad neurodevelopmental features, including an unusual speech difficulty (i.e., palilalia), and brain imaging studies revealed an array of cortical anomalies (e.g., frontal simplified gyration, focal frontal cortical dysplasia). These clinical and radiological observations expand the known WDSTS-related neurodevelopmental phenotypes and further strengthen the important role of KMT2A in brain function and cortical development.
Assuntos
Deficiências do Desenvolvimento/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Malformações do Desenvolvimento Cortical/genética , Proteína de Leucina Linfoide-Mieloide/genética , Córtex Cerebral/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Mutação da Fase de Leitura , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , SíndromeRESUMO
The goal of the present study was to verify the suitability of using melanomacrophage centres (MMCs) as response biomarkers of marine pollution in European anchovy, which are short-lived, migratory, small pelagic fish. This suitability was verified by analysing the MMC density and cytochrome P450 monooxygenase 1A (CYP1A) expression in livers of anchovies from four areas of southern Italy. Age 2 anchovies sampled from three areas exposed to pollutants of industrial/agricultural origin (Gulf of Gela, Mazara del Vallo and Gulf of Naples) showed liver areas occupied by MMCs and numbers of MMCs that were significantly higher than those in the anchovies from Pozzallo, which is a marine area not subjected to any source of pollution. Anti-CYP1A immunoreactivity was observed in the hepatocytes of all specimens sampled from the Gulf of Gela. These findings suggest the utility of liver MMCs as biomarkers of exposure to pollutants in this small pelagic fish.
Assuntos
Citocromo P-450 CYP1A1/metabolismo , Biomarcadores Ambientais , Peixes/fisiologia , Fígado/citologia , Poluição da Água , Animais , Itália , Fígado/metabolismo , Macrófagos , Mar MediterrâneoRESUMO
The first spine of the first dorsal fin (FS) of the Atlantic bluefin tuna (ABFT), Thunnus thynnus, is customarily used in age determination research because its transverse sections display well-defined growth marks. In this paper the FS structure was studied to explain its known dramatic age- and season-related morphological modifications, which are evidently caused by bone remodeling. Cross sections of samples from six adult ABFT were in part decalcified to be stained with histological, histochemical and immunohistochemical methods, and in part embedded in methyl-methacrylate to be either observed under a linear polarized light or microradiographed. FS showed an external compact bone zone and an inner trabecular bone zone. The compact bone zone consisted of an outer non-osteonic primary bone layer (C1) and an inner osteonic bone layer (C2). C1 was in turn characterized by alternate translucent and opaque bands. Evidence of spine bone remodeling was shown by the presence of osteoclasts and osteoblasts as well as by tartrate-resistant acid phosphatase (TRAP) positive bands at the boundary between old and newly formed bone. The examination of plain, i.e. not-fixed and not-decalcified, FS from 28 ABFT showed that the average thickness of C1 remained fairly constant during fish growth, whereas C2 increased significantly, indicating that the periosteal primary bone apposition is counterbalanced by the parallel bone remodeling occurring inside the compact bone zone. The present study revealed the structure of the ABFT FS and the pattern of its bone remodeling. Both of them underlay phenomena, never examined in detail before, such as the appearance followed by the progressive disappearance of growth bands.