Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589403

RESUMO

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitélio/metabolismo , Morfogênese
2.
Nature ; 623(7985): 183-192, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853125

RESUMO

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Assuntos
Compartimento Celular , Cromatina , Dano ao DNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Fase G1 , Histonas/metabolismo , Neoplasias/genética , Estruturas R-Loop , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
Nano Lett ; 18(10): 6326-6333, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30232897

RESUMO

In vivo, immune cells migrate through a wide variety of tissues, including confined and constricting environments. Deciphering how cells apply forces when infiltrating narrow areas is a critical issue that requires innovative experimental procedures. To reveal the distribution and dynamics of the forces of cells migrating in confined environments, we designed a device combining microchannels of controlled dimensions with integrated deformable micropillars serving as sensors of nanoscale subcellular forces. First, a specific process composed of two steps of photolithography and dry etching was tuned to obtain micrometric pillars of controlled stiffness and dimensions inside microchannels. Second, an image-analysis workflow was developed to automatically evaluate the amplitude and direction of the forces applied on the micropillars by migrating cells. Using this workflow, we show that this microdevice is a sensor of forces with a limit of detection down to 64 pN. Third, by recording pillar movements during the migration of macrophages inside the confining microchannels, we reveal that macrophages bent the pillars with typical forces of 0.3 nN and applied higher forces at the cell edges than around their nuclei. When the degree of confinement was increased, we found that forces were redirected from inward to outward. By providing a microdevice that allows the analysis of force direction and force magnitude developed by confined cells, our work paves the way for investigating the mechanical behavior of cells migrating though 3D constricted environments.


Assuntos
Técnicas de Cultura de Células , Núcleo Celular/química , Dispositivos Lab-On-A-Chip , Macrófagos/química , Técnicas Biossensoriais/métodos , Adesão Celular/genética , Movimento Celular/genética , Núcleo Celular/genética , Microambiente Celular/genética , Voluntários Saudáveis , Humanos , Fenômenos Mecânicos , Monócitos/química
4.
ACS Nano ; 11(4): 4028-4040, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28355484

RESUMO

Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.


Assuntos
Podossomos/química , Actinas/química , Actinas/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Células Cultivadas , Simulação por Computador , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Mecanotransdução Celular , Monócitos/citologia , Monócitos/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Paxilina/química , Paxilina/metabolismo , Podossomos/ultraestrutura , Propriedades de Superfície , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo
6.
ACS Nano ; 9(4): 3800-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791988

RESUMO

Podosomes are mechanosensitive adhesion cell structures that are capable of applying protrusive forces onto the extracellular environment. We have recently developed a method dedicated to the evaluation of the nanoscale forces that podosomes generate to protrude into the extracellular matrix. It consists in measuring by atomic force microscopy (AFM) the nanometer deformations produced by macrophages on a compliant Formvar membrane and has been called protrusion force microscopy (PFM). Here we perform time-lapse PFM experiments and investigate spatial correlations of force dynamics between podosome pairs. We use an automated procedure based on finite element simulations that extends the analysis of PFM experimental data to take into account podosome architecture and organization. We show that protrusion force varies in a synchronous manner for podosome first neighbors, a result that correlates with phase synchrony of core F-actin temporal oscillations. This dynamic spatial coordination between podosomes suggests a short-range interaction that regulates their mechanical activity.


Assuntos
Actinas/metabolismo , Fenômenos Mecânicos , Podossomos/metabolismo , Actinas/química , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Macrófagos/citologia , Microscopia de Força Atômica , Modelos Moleculares , Monócitos/citologia , Conformação Proteica
7.
Nature ; 518(7538): 245-8, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25607361

RESUMO

Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.


Assuntos
Apoptose , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Epiteliais/citologia , Epitélio/embriologia , Morfogênese , Junções Aderentes/química , Junções Aderentes/metabolismo , Animais , Forma Celular , Células Epiteliais/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(2): 378-83, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203966

RESUMO

A critical early step in drug discovery is the screening of a chemical library. Typically, promising compounds are identified in a primary screen and then more fully characterized in a dose-response analysis with 7-10 data points per compound. Here, we describe a robust microfluidic approach that increases the number of data points to approximately 10,000 per compound. The system exploits Taylor-Aris dispersion to create concentration gradients, which are then segmented into picoliter microreactors by droplet-based microfluidics. The large number of data points results in IC(50) values that are highly precise (± 2.40% at 95% confidence) and highly reproducible (CV = 2.45%, n = 16). In addition, the high resolution of the data reveals complex dose-response relationships unambiguously. We used this system to screen a chemical library of 704 compounds against protein tyrosine phosphatase 1B, a diabetes, obesity, and cancer target. We identified a number of novel inhibitors, the most potent being sodium cefsulodine, which has an IC(50) of 27 ± 0.83 µM.


Assuntos
Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Microfluídica/métodos , Bibliotecas de Moléculas Pequenas , Cefsulodina/farmacologia , Cromatografia Líquida de Alta Pressão , Fluorescência , Concentração Inibidora 50 , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tamanho da Amostra , beta-Galactosidase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA