RESUMO
Yearly, cannabis belongs to the most seized drugs worldwide. During judicial investigations, illicit cannabis profiling can be performed to compare seized herbal material. However, comparison is challenging because of the natural heterogeneity of the psychoactive crop. Gas chromatography-mass spectrometry (GC-MS) profiles, consisting of eight cannabinoids, were used to study the intra-location (within) and inter-location (between) variabilities. Decision thresholds were derived from the 95% and 99% confidence limits, applying Pearson correlation coefficients for the intra-location samples. The false negatives and false positives (FPs) determined the discriminative power of different pretreatments applied to obtain the lowest FP error rate possible. Initially, a 97 samples data set was used and with log transformation as pretreatment, a decrease in FPs from 38% and 45% FPs to 17% and 22%, for both confidence limits, respectively, was seen relative to internal standard normalization that was used as reference. An additional intra-plantation variability study with 130 samples verified whether the initial model contained sufficient within-location information, but this was not the case. Hence, a combined data matrix was constructed with all seized samples. Log transformation provided the best FP results for both limits, that is, an improvement from 58% and 64% to 21% and 26%, respectively, was seen. The representativeness of these 'linked' thresholds was demonstrated using both cross-validation and an external set, for which similar FP results as for the calibration set were obtained. By applying data pretreatment, a significant improvement was observed to distinguish seized samples. However, the FP rate is still not at an acceptable level to defend in court.
RESUMO
A micellar liquid chromatographic method was developed to assist in the modeling of the skin permeability of pharmaceutical and cosmetic compounds. The composition of the mobile phase was determined by means of a two-factor central composite design, after which it was tested on both a particle-based and monolithic column. The latter provided the opportunity to increase the flow rate from 1 to 8 mL/min without reaching too high backpressures. The micellar conditions allowed analyzing a large test set of compounds with diverse characteristics with just one mobile-phase composition. The obtained experimental chromatographic descriptors besides two sets of theoretical molecular descriptors were used to model the skin permeability coefficient log Kp, applying multiple linear regression and partial least squares regression approaches. The micellar method on the monolithic column provided useful models with similar or even slightly better performance parameters than the method on the particle-based column. Furthermore, a much faster analysis can be achieved when applying a flow rate of 8 mL/min, making the micellar monolithic method ideal to estimate skin permeability.
Assuntos
Cosméticos , Micelas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Permeabilidade , PeleRESUMO
Cannabis sativa L. is widely used as recreational illegal drugs. Illicit Cannabis profiling, comparing seized samples, is challenging due to natural Cannabis heterogeneity. The aim of this study was to use GC-FID and GC-MS herbal fingerprints for intra (within)- and inter (between)-location variability evaluation. This study focused on finding an acceptable threshold to link seized samples. Through Pearson correlation-coefficient calculations between intra-location samples, 'linked' thresholds were derived using 95% and 99% confidence limits. False negative (FN) and false positive (FP) error rate calculations, aiming at obtaining the lowest possible FP value, were performed for different data pre-treatments. Fingerprint-alignment parameters were optimized using Automated Correlation-Optimized Warping (ACOW) or Design of Experiments (DoE), which presented similar results. Hence, ACOW data, as reference, showed 54% and 65% FP values (95 and 99% confidence, respectively). An additional fourth root normalization pre-treatment provided the best results for both the GC-FID and GC-MS datasets. For GC-FID, which showed the best improved FP error rate, 54 and 65% FP for the reference data decreased to 24 and 32%, respectively, after fourth root transformation. Cross-validation showed FP values similar as the entire calibration set, indicating the representativeness of the thresholds. A noteworthy improvement in discrimination between seized Cannabis samples could be concluded.
Assuntos
Cannabis/química , Cromatografia Gasosa , Drogas Ilícitas/análise , Drogas Ilícitas/química , Área Sob a Curva , Cromatografia Gasosa/métodos , Análise de Dados , Cromatografia Gasosa-Espectrometria de Massas , Curva ROC , Reprodutibilidade dos TestesRESUMO
Ipomoea aquatica is a common green leafy vegetable that has numerous uses in traditional medicine. This study focused on the determination of the cytotoxic, antiradical, and antidiabetic properties of various fractions of the I. aquatica methanolic extract, as well as on the tentative identification of some bioactive compounds in the same fractions. The cytotoxicity was determined by the brine shrimp lethal test. The antioxidant activities of the I. aquatica fractions were investigated through 3 assays. The antidiabetic activity (in vitro) was measured by α-glucosidase and α-amylase inhibition assays. Phytochemical qualitative analyses demonstrated the presence of alkaloids, terpenoids, phenols, and flavonoids in the ethyl acetate-methanol and methanol fractions. The total phenolic and total flavonoid contents were found to be highest in the ethyl acetate-MeOH fractions. The evaluation of the cytotoxicity showed that the hexane-dichloromethane fraction is the most toxic, while the others are moderately toxic. The antioxidant activity assays showed that the ethyl acetate-MeOH fractions are the most potent, while the α-glucosidase and α-amylase assays revealed that the hexane-dichloromethane fraction might contain a potent antidiabetic agent. Some bioactive substances in the MeOH fractions, such as salicylic acid glucoside, 1-O-sinapoyl-ß-D-glucose derivative, and dihydroferulic acid derivative, were tentatively identified. To the best of our knowledge, this is the first report to detect and identify these compounds in this species. Based on the results of this study, it may be concluded that I. aquatica is a potent antioxidant agent and could be a good candidate as a natural antioxidant in food and therapeutics.
Assuntos
Antioxidantes , Ipomoea , Antioxidantes/farmacologia , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/farmacologiaRESUMO
Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples.
Assuntos
Produtos Biológicos/análise , Química Verde/tendências , Peptídeos/análise , Preparações Farmacêuticas/análise , Animais , Produtos Biológicos/química , Química Verde/métodos , Humanos , Peptídeos/química , Preparações Farmacêuticas/químicaRESUMO
Three new tetraoxa-diaza derivatives of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane (R-1, R-2 and R-3) and three commercially available crown ethers, 18-crown-6 (18C6), (+)-18-crown-6-tetracarboxilic acid (18C6H4) and 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane, were investigated to separate the positional isomers of aminophenol, aminobenzoic acid and aminocresol. The running electrolyte, in which the crown ethers were dissolved, was a 50 mM Tris solution adjusted to pH 2.0 with hydrochloric acid. Using 50 mM H3PO4 buffer, whose pH was adjusted to 2.0 with Tris, or only hydrochloric acid solution with the same pH, did not allow good separations for the tested components. The effect of the crown ether concentration on the separation of the 11 positional isomers was studied in the concentration range of 10-50 mM. The best separations were achieved using the 18C6 and the 18C6H4 crown ethers: 9 isomers out of 11 could be separated within one run. The m- and p-aminophenol isomers could not be separated under the investigated experimental conditions. The newly synthesized tetraoxa-diaza crown ether derivatives were only found suitable for the separation of aminobenzoic acid positional isomers. The macrocyclic ring of the tetraoxa-diaza crown ethers was not able to form a stable inclusion complex with the tested positional isomers. Consequently, the aminophenol and aminocresol isomers were not separated, the isomers migrated with the same or very similar velocities.
Assuntos
Éteres de Coroa/isolamento & purificação , Eletroforese Capilar/métodos , Éteres de Coroa/síntese química , IsomerismoRESUMO
Different dual selector systems containing a cyclodextrin derivative (methyl-beta-cyclodextrin and dimethyl-beta-cyclodextrin) and a new diaza-crown-ether derivative (N-[2-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)propanoyl]glycine) were studied in the enantioselective separation of tryptophan-methylester and tyrosine-methylester enantiomers. This paper deals with the systematic study of the effects of changing the composition of the background electrolyte on the resolution of the d- and l- forms using an experimental design approach. It was found that the dual systems allowed a better chiral separation of the amino acid derivatives. The experimental design approach also allowed improving the separation compared to the starting conditions (center point of the design), which were adopted from a previous study.
Assuntos
Coronantes/química , Ciclodextrinas/química , Glicina/análogos & derivados , Triptofano/análogos & derivados , Tirosina/análogos & derivados , Algoritmos , Soluções Tampão , Técnicas de Química Combinatória , Eletrólitos , Eletroforese Capilar , Glicina/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Estereoisomerismo , Triptofano/isolamento & purificação , Tirosina/isolamento & purificaçãoRESUMO
The influence of using normal-phase and reversed-phase versions of four commercial polysaccharide stationary phases on chiral separations was investigated with capillary electrochromatography (CEC). Both versions of the stationary phases, Chiralcel OD, OJ, and Chiralpak AD, AS were tested for the separation of two basic, two acidic, a bifunctional, and a neutral compound. Different background electrolytes were used, two at low pH for the acid, bifunctional and neutral substances, and three at high pH for the basic, bifunctional and neutral ones. This setup allowed evaluating differences between both stationary-phase versions and between mobile-phase compositions on a chiral separation. Duplicate CEC columns of each stationary phase were in-house prepared and tested, giving information about the intercolumn reproducibility. In general, reversed-phase versions of the current commercial polysaccharide stationary phases are found to be best for reversed-phase CEC, even though at high pH no significant differences were seen between both versions. Most differences were observed at low pH. For acidic compounds, it was seen that an ammonium formate electrolyte performed best, which is also an excellent electrolyte if coupling with mass spectrometry is desired. For basic, bifunctional and neutral compounds, no significant differences between the three tested electrolytes were observed at high pH. Here, a phosphate buffer is preferred as electrolyte because of its buffering capacities. However, if coupling to mass spectrometry is wanted, the more volatile ammonium bicarbonate electrolyte can be used as an alternative.