Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Toxicol ; 39(3): 198-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372678

RESUMO

The Tg.rasH2 mouse was developed as an alternative model to the traditional 2-year mouse bioassay for pharmaceutical carcinogenicity testing. This model has found extensive use in support of pharmaceutical drug development over the last few decades. It has the potential to improve quality and timeliness, reduce animal usage, and in some instances allow expedient decision-making regarding the human carcinogenicity potential of a drug candidate. Despite the increased use of the Tg.rasH2 model, there has been no systematic survey of current practices in the design, interpretation of results from the bioassay, and global health authority perspectives. Therefore, the aim of this work was to poll the pharmaceutical industry on study design practices used in the dose range finding and definitive 6-month studies and on results relative to the ongoing negotiations to revise The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S1 Guidance. Twenty-two member companies of International Consortium for Innovation and Quality in Pharmaceutical Development DruSafe Leadership Group participated in the survey, sharing experiences from studies conducted with 55 test compounds between 2010 and 2018. The survey results provide very useful insights into study design and interpretation. Importantly, the results identified several key opportunities for reducing animal use and increasing the value of testing for potential human carcinogenicity using this model. Recommended changes to study designs that would reduce animal usage include eliminating the requirement to include positive control groups in every study, use of nontransgenic wild-type littermates in the dose range finding study, and use of microsampling to reduce or eliminate satellite groups for toxicokinetics.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Bioensaio , Genes ras , Camundongos Transgênicos , Projetos de Pesquisa , Inquéritos e Questionários
2.
Toxicol Lett ; 317: 120-129, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580884

RESUMO

PEGylation is considered a safe mechanism to enhance the pharmacokinetics (PK) and pharmacodynamics (PD) of biotherapeutics. Previous studies using PEGylation as a PK enhancement tool have reported benign PEG-related vacuolation in multiple tissues. This paper establishes a threshold for PEG burden beyond which there are alterations in tissue architecture that could potentially lead to dysfunction. As part of the nonclinical safety assessment of Compound A, a 12 kDa protein conjugated to a 40 kDa branched PEG molecule, monkeys were dosed subcutaneously twice weekly for 3 months at protein doses resulting in weekly PEG doses of 8, 24, 120, or 160 mg/kg. Consistent with previous reports with PEGylated biomolecules, Compound A administration resulted in intracellular vacuoles attributed to the PEG moiety in macrophages in numerous tissues and epithelial cells in the choroid plexus and kidney. Vacuolation occurred at all doses with dose-dependent severity and no evidence of recovery up to 2 months after dosing cessation. The vacuolation was considered nonadverse at PEG doses ≤120 mg/kg/week. However, at 160 mg/kg/week PEG, the vacuolation in choroid plexus, pituitary gland, kidney, and choroid of the eye was considered adverse due to significant alterations of tissue architecture that raised concern for the possibility of compromised tissue function. To our knowledge, this is the first report of potentially adverse cellular consequences of PEG accumulation in tissues other than kidney. Furthermore, the lack of reversibility of vacuolation coupled with the lack of a biomarker for intracellular PEG accumulation highlights a potential risk that should be weighed against the benefits of PK/PD enhancement for long-term administration of PEGylated compounds at high doses.


Assuntos
Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/toxicidade , Proteínas/toxicidade , Vacúolos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Composição de Medicamentos , Células Epiteliais/patologia , Feminino , Injeções Subcutâneas , Macaca fascicularis , Macrófagos/patologia , Masculino , Polietilenoglicóis/administração & dosagem , Proteínas/administração & dosagem , Medição de Risco , Fatores de Tempo , Vacúolos/patologia
3.
Toxicol Pathol ; 46(2): 147-157, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29471778

RESUMO

The purpose of this study was to establish a 2-stage model of urinary bladder carcinogenesis in male Sprague-Dawley rats to identify tumor promoters. In phase 1 of the study, rats ( n = 170) were administered 100 mg/kg of the tumor initiator, N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN), twice weekly by oral gavage (po) for a period of 6 weeks. Phase 2 consisted of dividing rats into 4 groups ( n = 40 per group) and administering one of the following for 26 weeks to identify putative tumor promoters: (1) vehicle po, (2) 25 mg/kg/day rosiglitazone po, (3) 5% dietary sodium l-ascorbate, and (4) 3% dietary uracil. Rats were necropsied after 7.5 months, and urinary bladders were evaluated by histopathology. BBN/vehicle treatments induced the development of urothelial hyperplasia (83%) and papillomas (15%) but no transitional cell carcinomas (TCCs). Rosiglitazone increased the incidence and severity of papillomas (93%) and resulted in TCC in 10% of treated rats. Uracil was the most effective tumor promoter in our study and increased the incidence of papillomas (90%) and TCC (74%). Sodium ascorbate decreased the incidence of urothelial hyperplasia (63%) and did not increase the incidence of urothelial papillomas or TCC. These data confirm the capacity of our 2-stage model to identify urinary bladder tumor promoters.


Assuntos
Ácido Ascórbico/toxicidade , Carcinógenos/farmacologia , Carcinoma de Células de Transição/induzido quimicamente , Rosiglitazona/toxicidade , Uracila/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/efeitos dos fármacos
4.
Diabetes ; 63(4): 1303-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24222349

RESUMO

Glucagon-like peptide 1-based therapies, collectively described as incretins, produce glycemic benefits in the treatment of type 2 diabetes. Recent publications raised concern for a potential increased risk of pancreatitis and pancreatic cancer with incretins based in part on findings from a small number of rodents. However, extensive toxicology assessments in a substantial number of animals dosed up to 2 years at high multiples of human exposure do not support these concerns. We hypothesized that the lesions being attributed to incretins are commonly observed background findings and endeavored to characterize the incidence of spontaneous pancreatic lesions in three rat strains (Sprague-Dawley [S-D] rats, Zucker diabetic fatty [ZDF] rats, and rats expressing human islet amyloid polypeptide [HIP]; n = 36/group) on a normal or high-fat diet over 4 months. Pancreatic findings in all groups included focal exocrine degeneration, atrophy, inflammation, ductular cell proliferation, and/or observations in large pancreatic ducts similar to those described in the literature, with an incidence of exocrine atrophy/inflammation seen in S-D (42-72%), HIP (39%), and ZDF (6%) rats. These data indicate that the pancreatic findings attributed to incretins are common background findings, observed without drug treatment and independent of diet or glycemic status, suggesting a need to exercise caution when interpreting the relevance of some recent reports regarding human safety.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Pâncreas/efeitos dos fármacos , Pancreatopatias/etiologia , Animais , Diabetes Mellitus/fisiopatologia , Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Incretinas/efeitos adversos , Pâncreas/patologia , Pancreatite/etiologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA