Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292845

RESUMO

The orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling1. GPR161 mutations lead to developmental defects and cancers2,3,4. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear. To elucidate GPR161 function, we determined a cryogenic-electron microscopy structure of active GPR161 bound to the heterotrimeric G protein complex Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, we identify a sterol that binds to a conserved extrahelical site adjacent to transmembrane helices 6 and 7 and stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress cAMP pathway activation. Surprisingly, these mutants retain the ability to suppress GLI2 transcription factor accumulation in cilia, a key function of ciliary GPR161 in Hedgehog pathway suppression. By contrast, a protein kinase A-binding site in the GPR161 C-terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how unique structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the broader role of GPR161 function in other signaling pathways.

2.
Nat Commun ; 13(1): 4366, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902590

RESUMO

Single particle cryogenic-electron microscopy (cryo-EM) is used extensively to determine structures of activated G protein-coupled receptors (GPCRs) in complex with G proteins or arrestins. However, applying it to GPCRs without signaling proteins remains challenging because most receptors lack structural features in their soluble domains to facilitate image alignment. In GPCR crystallography, inserting a fusion protein between transmembrane helices 5 and 6 is a highly successful strategy for crystallization. Although a similar strategy has the potential to broadly facilitate cryo-EM structure determination of GPCRs alone without signaling protein, the critical determinants that make this approach successful are not yet clear. Here, we address this shortcoming by exploring different fusion protein designs, which lead to structures of antagonist bound A2A adenosine receptor at 3.4 Å resolution and unliganded Smoothened at 3.7 Å resolution. The fusion strategies explored here are likely applicable to cryo-EM interrogation of other GPCRs and small integral membrane proteins.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Microscopia Crioeletrônica/métodos , Cristalografia , Proteínas de Ligação ao GTP/metabolismo , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo
3.
Methods Mol Biol ; 2374: 149-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34562250

RESUMO

The Hedgehog signaling pathway coordinates early development and is important in various cancers. Classic approaches to test pathway activation rely on transcriptional readouts or ciliary accumulation of specific pathway components. Although these assays have laid the foundation for studying Hedgehog pathway activation, they integrate the complex molecular actions of the transporter Patched and the seven transmembrane protein Smoothened. Though it is clear that cellular sterols are critical for pathway activity, direct dissection of which sterols drive Smoothened activity is precluded by the complex biosynthetic pathways responsible for cellular sterols. Here we describe a direct method of measuring Smoothened activity in vitro. This assay measures the binding of Smoothened to NbSmo8, a single-domain antibody that is selective for the active-state of Smoothened. Binding of purified Smoothened, reconstituted with specific sterols, to fluorescently labeled NbSmo8 can be rapidly evaluated using a fluorescence-detection size-exclusion chromatography assay. This approach enables a reductionist approach to precisely interrogate the regulatory activities of cellular lipids and sterols during Hedgehog signaling.


Assuntos
Receptor Smoothened/metabolismo , Proteínas Hedgehog , Proteínas de Membrana , Receptores Acoplados a Proteínas G , Transdução de Sinais , Esteróis
4.
PLoS Biol ; 19(4): e3001191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886552

RESUMO

The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Receptor Smoothened/fisiologia , Animais , Animais Geneticamente Modificados , Domínio Catalítico/genética , Células Cultivadas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Embrião não Mamífero , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas/genética , Transdução de Sinais/genética , Receptor Smoothened/metabolismo , Peixe-Zebra
5.
Cancer Discov ; 11(8): 2032-2049, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33727310

RESUMO

Alternative strategies are needed for patients with B-cell malignancy relapsing after CD19-targeted immunotherapy. Here, cell surface proteomics revealed CD72 as an optimal target for poor-prognosis KMT2A/MLL1-rearranged (MLLr) B-cell acute lymphoblastic leukemia (B-ALL), which we further found to be expressed in other B-cell malignancies. Using a recently described, fully in vitro system, we selected synthetic CD72-specific nanobodies, incorporated them into chimeric antigen receptors (CAR), and demonstrated robust activity against B-cell malignancy models, including CD19 loss. Taking advantage of the role of CD72 in inhibiting B-cell receptor signaling, we found that SHIP1 inhibition increased CD72 surface density. We establish that CD72-nanobody CAR-T cells are a promising therapy for MLLr B-ALL. SIGNIFICANCE: Patients with MLLr B-ALL have poor prognoses despite recent immunotherapy advances. Here, surface proteomics identifies CD72 as being enriched on MLLr B-ALL but also widely expressed across B-cell cancers. We show that a recently described, fully in vitro nanobody platform generates binders highly active in CAR-T cells and demonstrate its broad applicability for immunotherapy development.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Antígenos CD19/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos Quiméricos/imunologia , Humanos , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Proteômica
6.
Nature ; 586(7831): 807-811, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814342

RESUMO

The serum level of iron in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin regulates iron absorption and recycling by inducing the internalization and degradation of ferroportin1. Aberrant ferroportin activity can lead to diseases of iron overload, such as haemochromatosis, or iron limitation anaemias2. Here we determine cryogenic electron microscopy structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with hepcidin and the iron mimetic cobalt. These structures and accompanying molecular dynamics simulations identify two metal-binding sites within the N and C domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway to inhibit transport. The carboxy terminus of hepcidin directly contacts the divalent metal in the ferroportin C domain. Hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a model for hepcidin regulation of ferroportin, in which only ferroportin molecules loaded with iron are targeted for degradation. More broadly, our structural and functional insights may enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Microscopia Crioeletrônica , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Proteínas de Transporte de Cátions/ultraestrutura , Cobalto/química , Cobalto/metabolismo , Hepcidinas/química , Humanos , Ferro/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteólise
7.
Nature ; 571(7764): 284-288, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263273

RESUMO

Hedgehog signalling is fundamental to embryonic development and postnatal tissue regeneration1. Aberrant postnatal Hedgehog signalling leads to several malignancies, including basal cell carcinoma and paediatric medulloblastoma2. Hedgehog proteins bind to and inhibit the transmembrane cholesterol transporter Patched-1 (PTCH1), which permits activation of the seven-transmembrane transducer Smoothened (SMO) via a mechanism that is poorly understood. Here we report the crystal structure of active mouse SMO bound to both the agonist SAG21k and to an intracellular binding nanobody that stabilizes a physiologically relevant active state. Analogous to other G protein-coupled receptors, the activation of SMO is associated with subtle motions in the extracellular domain, and larger intracellular changes. In contrast to recent models3-5, a cholesterol molecule that is critical for SMO activation is bound deep within the seven-transmembrane pocket. We propose that the inactivation of PTCH1 by Hedgehog allows a transmembrane sterol to access this seven-transmembrane site (potentially through a hydrophobic tunnel), which drives the activation of SMO. These results-combined with signalling studies and molecular dynamics simulations-delineate the structural basis for PTCH1-SMO regulation, and suggest a strategy for overcoming clinical resistance to SMO inhibitors.


Assuntos
Membrana Celular/química , Proteínas Hedgehog/agonistas , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Esteróis/farmacologia , Animais , Sítios de Ligação , Técnicas Biossensoriais , Domínio Catalítico/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Proteínas Hedgehog/metabolismo , Ligantes , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Receptor Patched-1/antagonistas & inibidores , Receptor Patched-1/metabolismo , Conformação Proteica , Estabilidade Proteica , Anticorpos de Cadeia Única/imunologia , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/química , Esteróis/química , Esteróis/metabolismo , Proteínas de Xenopus/química
8.
Neuron ; 98(5): 963-976.e5, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754753

RESUMO

Opioid receptors (ORs) precisely modulate behavior when activated by native peptide ligands but distort behaviors to produce pathology when activated by non-peptide drugs. A fundamental question is how drugs differ from peptides in their actions on target neurons. Here, we show that drugs differ in the subcellular location at which they activate ORs. We develop a genetically encoded biosensor that directly detects ligand-induced activation of ORs and uncover a real-time map of the spatiotemporal organization of OR activation in living neurons. Peptide agonists produce a characteristic activation pattern initiated in the plasma membrane and propagating to endosomes after receptor internalization. Drugs produce a different activation pattern by additionally driving OR activation in the somatic Golgi apparatus and Golgi elements extending throughout the dendritic arbor. These results establish an approach to probe the cellular basis of neuromodulation and reveal that drugs distort the spatiotemporal landscape of neuronal OR activation.


Assuntos
Analgésicos Opioides/metabolismo , Membrana Celular/metabolismo , Dendritos/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Receptores Opioides/metabolismo , Animais , Técnicas Biossensoriais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , D-Penicilina (2,5)-Encefalina/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Espaço Intracelular , Microscopia de Fluorescência , Morfina/metabolismo , Naloxona , Antagonistas de Entorpecentes , Ratos , Análise Espaço-Temporal
9.
Proc Natl Acad Sci U S A ; 115(15): 3834-3839, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581292

RESUMO

The ability of G protein-coupled receptors (GPCRs) to initiate complex cascades of cellular signaling is governed by the sequential coupling of three main transducer proteins, G protein, GPCR kinase (GRK), and ß-arrestin. Mounting evidence indicates these transducers all have distinct conformational preferences and binding modes. However, interrogating each transducer's mechanism of interaction with GPCRs has been complicated by the interplay of transducer-mediated signaling events. For example, GRK-mediated receptor phosphorylation recruits and induces conformational changes in ß-arrestin, which facilitates coupling to the GPCR transmembrane core. Here we compare the allosteric interactions of G proteins and ß-arrestins with GPCRs' transmembrane cores by using the enzyme sortase to ligate a synthetic phosphorylated peptide onto the carboxyl terminus of three different receptors. Phosphopeptide ligation onto the ß2-adrenergic receptor (ß2AR) allows stabilization of a high-affinity receptor active state by ß-arrestin1, permitting us to define elements in the ß2AR and ß-arrestin1 that contribute to the receptor transmembrane core interaction. Interestingly, ligation of the identical phosphopeptide onto the ß2AR, the muscarinic acetylcholine receptor 2 and the µ-opioid receptor reveals that the ability of ß-arrestin1 to enhance agonist binding relative to G protein differs substantially among receptors. Furthermore, strong allosteric coupling of ß-arrestin1 correlates with its ability to attenuate, or "desensitize," G protein activation in vitro. Sortase ligation thus provides a versatile method to introduce complex, defined phosphorylation patterns into GPCRs, and analogous strategies could be applied to other classes of posttranslationally modified proteins. These homogeneously phosphorylated GPCRs provide an innovative means to systematically study receptor-transducer interactions.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Opioides mu/metabolismo , beta-Arrestina 1/metabolismo , Regulação Alostérica , Humanos , Fosforilação , Receptor Muscarínico M2/genética , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/genética , beta-Arrestina 1/genética
10.
Proc Natl Acad Sci U S A ; 112(47): E6506-14, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26604307

RESUMO

Signaling through the immune checkpoint programmed cell death protein-1 (PD-1) enables tumor progression by dampening antitumor immune responses. Therapeutic blockade of the signaling axis between PD-1 and its ligand programmed cell death ligand-1 (PD-L1) with monoclonal antibodies has shown remarkable clinical success in the treatment of cancer. However, antibodies have inherent limitations that can curtail their efficacy in this setting, including poor tissue/tumor penetrance and detrimental Fc-effector functions that deplete immune cells. To determine if PD-1:PD-L1-directed immunotherapy could be improved with smaller, nonantibody therapeutics, we used directed evolution by yeast-surface display to engineer the PD-1 ectodomain as a high-affinity (110 pM) competitive antagonist of PD-L1. In contrast to anti-PD-L1 monoclonal antibodies, high-affinity PD-1 demonstrated superior tumor penetration without inducing depletion of peripheral effector T cells. Consistent with these advantages, in syngeneic CT26 tumor models, high-affinity PD-1 was effective in treating both small (50 mm(3)) and large tumors (150 mm(3)), whereas the activity of anti-PD-L1 antibodies was completely abrogated against large tumors. Furthermore, we found that high-affinity PD-1 could be radiolabeled and applied as a PET imaging tracer to efficiently distinguish between PD-L1-positive and PD-L1-negative tumors in living mice, providing an alternative to invasive biopsy and histological analysis. These results thus highlight the favorable pharmacology of small, nonantibody therapeutics for enhanced cancer immunotherapy and immune diagnostics.


Assuntos
Imunoterapia , Proteínas Mutantes/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Tomografia por Emissão de Pósitrons , Receptor de Morte Celular Programada 1/uso terapêutico , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Evolução Molecular Direcionada , Modelos Animais de Doenças , Humanos , Depleção Linfocítica , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/química , Ligação Proteica , Linfócitos T/metabolismo
11.
Mol Imaging ; 7(5): 222-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19123992

RESUMO

Salmonella Typhimurium is a common cause of gastroenteritis in humans and also localizes to neoplastic tumors in animals. Invasion of specific eukaryotic cells is a key mechanism of Salmonella interactions with host tissues. Early stages of gastrointestinal cell invasion are mediated by a Salmonella type III secretion system, powered by the adenosine triphosphatase invC. The aim of this work was to characterize the invC dependence of invasion kinetics into disparate eukaryotic cells traditionally used as models of gut epithelium or neoplasms. Thus, a nondestructive real-time assay was developed to report eukaryotic cell invasion kinetics using lux+ Salmonella that contain chromosomally integrated luxCDABE genes. Bioluminescence-based invasion assays using lux+ Salmonella exhibited inoculum dose-response correlation, distinguished invasion-competent from invasion-incompetent Salmonella, and discriminated relative Salmonella invasiveness in accordance with environmental conditions that induce invasion gene expression. In standard gentamicin protection assays, bioluminescence from lux+ Salmonella correlated with recovery of colony-forming units of internalized bacteria and could be visualized by bioluminescence microscopy. Furthermore, this assay distinguished invasion-competent from invasion-incompetent bacteria independent of gentamicin treatment in real time. Bioluminescence reported Salmonella invasion of disparate eukaryotic cell lines, including neoplastic melanoma, colon adenocarcinoma, and glioma cell lines used in animal models of malignancy. In each case, Salmonella invasion of eukaryotic cells was invC dependent.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , ATPases Translocadoras de Prótons/genética , Infecções por Salmonella/genética , Salmonella typhimurium/genética , Adenocarcinoma/genética , Antibacterianos/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Gentamicinas/farmacologia , Glioma/genética , Células HT29 , Humanos , Cinética , Luminescência , Medições Luminescentes , Melanoma/genética , Photorhabdus/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA