Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Immunol ; 397-398: 104814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422979

RESUMO

The aim of this study was to assess the potential use of a selective small molecule MALT1 inhibitor in solid tumor treatment as an immunotherapy targeting regulatory T-cells (Tregs). In vitro, MALT1 inhibition suppressed the proteolytic cleavage of the MALT1-substrate HOIL1 and blocked IL-2 secretion in Jurkat cells. It selectively suppressed the proliferation of PBMC-derived Tregs, with no effect on conventional CD4+T-cells. In vivo, however, no evident anti-tumor effect was achieved by MALT1 inhibition monotherapy or in combination with anti-CTLA4 in the MB49 cancer model. Despite decreased Treg-frequencies in lymph nodes of tumor-bearing animals, intratumoral Treg depletion was not observed. We also showed that MALT1-inhibition caused a reduction of antigen-specific CD8+T-cells in an adoptive T-cell transfer model. Thus, selective targeting of Tregs would be required to improve the immunotherapeutic effect of MALT1-inhibition. Also, various dosing schedules and combination therapy strategies should be carefully designed and evaluated further.


Assuntos
Leucócitos Mononucleares , Neoplasias , Animais , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Proteólise
3.
Int Immunopharmacol ; 126: 111225, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37988911

RESUMO

Therapeutic cancer vaccines are novel immuno-therapeutics, aiming to improve clinical outcomes with other immunotherapies. However, obstacles to their successful clinical development remain, which model-informed drug development approaches may address. UV1 is a telomerase based therapeutic cancer vaccine candidate being investigated in phase I clinical trials for multiple indications. We developed a mechanism-based model structure, using a nonlinear mixed-effects modeling techniques, based on longitudinal tumor sizes (sum of the longest diameters, SLD), UV1-specific immunological assessment (stimulation index, SI) and overall survival (OS) data obtained from a UV1 phase I trial including non-small cell lung cancer (NSCLC) patients and a phase I/IIa trial including malignant melanoma (MM) patients. The final structure comprised a mechanistic tumor growth dynamics (TGD) model, a model describing the probability of observing a UV1-specific immune response (SI ≥ 3) and a time-to-event model for OS. The mechanistic TGD model accounted for the interplay between the vaccine peptides, immune system and tumor. The model-predicted UV1-specific effector CD4+ T cells induced tumor shrinkage with half-lives of 103 and 154 days in NSCLC and MM patients, respectively. The probability of observing a UV1-specific immune response was mainly driven by the model-predicted UV1-specific effector and memory CD4+ T cells. A high baseline SLD and a high relative increase from nadir were identified as main predictors for a reduced OS in NSCLC and MM patients, respectively. Our model predictions highlighted that additional maintenance doses, i.e. UV1 administration for longer periods, may result in more sustained tumor size shrinkage.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Telomerase , Humanos , Vacinas Anticâncer/uso terapêutico , Telomerase/uso terapêutico , Neoplasias Pulmonares/patologia , Peptídeos/uso terapêutico
4.
BMC Cancer ; 23(1): 605, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391708

RESUMO

BACKGROUND: Urothelial bladder cancer is most frequently diagnosed at the non-muscle-invasive stage (NMIBC). However, recurrences and interventions for intermediate and high-risk NMIBC patients impact the quality of life. Biomarkers for patient stratification could help to avoid unnecessary interventions whilst indicating aggressive measures when required. METHODS: In this study, immuno-oncology focused, multiplexed proximity extension assays were utilised to analyse plasma (n = 90) and urine (n = 40) samples from 90 newly-diagnosed and treatment-naïve bladder cancer patients. Public single-cell RNA-sequencing and microarray data from patient tumour tissues and murine OH-BBN-induced urothelial carcinomas were also explored to further corroborate the proteomic findings. RESULTS: Plasma from muscle-invasive, urothelial bladder cancer patients displayed higher levels of MMP7 (p = 0.028) and CCL23 (p = 0.03) compared to NMIBC patients, whereas urine displayed higher levels of CD27 (p = 0.044) and CD40 (p = 0.04) in the NMIBC group by two-sided Wilcoxon rank-sum tests. Random forest survival and multivariable regression analyses identified increased MMP12 plasma levels as an independent marker (p < 0.001) associated with shorter overall survival (HR = 1.8, p < 0.001, 95% CI:1.3-2.5); this finding was validated in an independent patient OLINK cohort, but could not be established using a transcriptomic microarray dataset. Single-cell transcriptomics analyses indicated tumour-infiltrating macrophages as a putative source of MMP12. CONCLUSIONS: The measurable levels of tumour-localised, immune-cell-derived MMP12 in blood suggest MMP12 as an important biomarker that could complement histopathology-based risk stratification. As MMP12 stems from infiltrating immune cells rather than the tumor cells themselves, analyses performed on tissue biopsy material risk a biased selection of biomarkers produced by the tumour, while ignoring the surrounding microenvironment.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Metaloproteinase 12 da Matriz/genética , Proteômica , Qualidade de Vida , Macrófagos , Prognóstico , Microambiente Tumoral
5.
Brain Commun ; 5(3): fcad164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274830

RESUMO

Multiple sclerosis is a highly complex and heterogeneous disease. At the onset it often presents as a clinically isolated syndrome. Thereafter relapses are followed by periods of remissions, but eventually, most patients develop secondary progressive multiple sclerosis. It is widely accepted that autoantibodies are important to the pathogenesis of multiple sclerosis, but hitherto it has been difficult to identify the target of such autoantibodies. As an alternative strategy, cell-based methods of detecting autoantibodies have been developed. The objective of this study was to explore differences in the binding of antibodies from sera and CSF of multiple sclerosis patients and controls to oligodendroglial and neuronal cell-lines, related to antibody type, immunoglobulin (IgG/IgM), matrix (serum/CSF) and disease course. The oligodendroglial and neuronal cell-lines were expanded in tissue culture flasks and transferred to 96-well plates at a concentration of 50 000 cells/well followed by fixation and blocking with bovine serum albumin. Sera and CSF samples, from healthy controls and multiple sclerosis patients, were incubated with the fixed cells. Epitope binding of immunoglobulins (IgG and IgM) in sera and CSF was detected using biotinylated anti-human IgM and IgG followed by avidin conjugated to horseradish peroxidase. Horseradish peroxidase activity was detected with 3,3',5,5'-tetramethylbenzidine substrate. Serum from 76 patients and 30 controls as well as CSF from 62 patients and 32 controls were investigated in the study. The binding was similar between clinically isolated syndrome patients and controls, whereas the largest differences were observed between secondary progressive multiple sclerosis patients and controls. Antibodies from multiple sclerosis patients (all disease course combined) bound more to all investigated cell-lines, irrespectively of matrix type, but binding of immunoglobulin G from CSF to human oligodendroglioma cell-line discriminated best between multiple sclerosis patients and controls with a sensitivity of 93% and a specificity of 96%. The cell-based enzyme linked immunosorbent assay (ELISA) was able to discriminate between multiple sclerosis patients and controls with a high degree of accuracy. The disease course was the major determinant for the antibody binding.

6.
Chembiochem ; 24(15): e202300103, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021633

RESUMO

The SARS-CoV-2 virus that causes COVID-19 is a global health issue. The spread of the virus has resulted in seven million deaths to date. The emergence of new viral strains highlights the importance of continuous surveillance of the SARS-CoV-2 virus by using timely and accurate diagnostic tools. Here, we used a stable cyclic peptide scaffolds to present antigenic sequences derived from the spike protein that are reactive to SARS-CoV-2 antibodies. Using peptide sequences from different domains of SARS-CoV-2 spike proteins, we grafted epitopes on the peptide scaffold sunflower trypsin inhibitor 1 (SFTI-1). These scaffold peptides were then used to develop an ELISA to detect SARS-CoV-2 antibodies in serum. We show that displaying epitopes on the scaffold improves reactivity overall. One of the scaffold peptides (S2_1146-1161_c) has reactivity equal to that of commercial assays, and shows diagnostic potential.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Epitopos , Anticorpos Antivirais , Peptídeos , Peptídeos Cíclicos
8.
J Transl Med ; 20(1): 419, 2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089578

RESUMO

BACKGROUND: This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment. METHODS: The trial was an open-label, single-center phase I/IIa study. Eligible patients had unresectable metastatic melanoma. Patients received up to 9 UV1 vaccinations and four ipilimumab infusions. Clinical responses were assessed according to RECIST 1.1. Patients were followed up for progression-free survival (PFS) and overall survival (OS). Whole-exome and RNA sequencing, and multiplex immunofluorescence were performed on the biopsies. T cell receptor (TCR) sequencing was performed on the peripheral blood and tumor tissues. RESULTS: Twelve patients were enrolled in the study. Vaccine-specific immune responses were detected in 91% of evaluable patients. Clinical responses were observed in four patients. The mPFS was 6.7 months, and the mOS was 66.3 months. There was no association between baseline tumor mutational burden, neoantigen load, IFN-γ gene signature, tumor-infiltrating lymphocytes, and response to therapy. Tumor telomerase expression was confirmed in all available biopsies. Vaccine-enriched TCR clones were detected in blood and biopsy, and an increase in the tumor IFN-γ gene signature was detected in clinically responding patients. CONCLUSION: Clinical responses were observed irrespective of established predictive biomarkers for checkpoint inhibitor efficacy, indicating an added benefit of the vaccine-induced T cells. The clinical and immunological read-out warrants further investigation of UV1 in combination with checkpoint inhibitors. Trial registration Clinicaltrials.gov identifier: NCT02275416. Registered October 27, 2014. https://clinicaltrials.gov/ct2/show/NCT02275416?term=uv1&draw=2&rank=6.


Assuntos
Melanoma , Telomerase , Humanos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Melanoma/patologia , Microambiente Tumoral , Vacinação
9.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613827

RESUMO

BACKGROUND: Therapeutic cancer vaccines represent a promising approach to improve clinical outcomes with immune checkpoint inhibition. UV1 is a second generation telomerase-targeting therapeutic cancer vaccine being investigated across multiple indications. Although telomerase is a near-universal tumor target, different treatment combinations applied across indications may affect the induced immune response. Three phase I/IIa clinical trials covering malignant melanoma, non-small cell lung cancer, and prostate cancer have been completed, with patients in follow-up for up to 8 years. METHODS: 52 patients were enrolled across the three trials. UV1 was given as monotherapy in the lung cancer trial and concurrent with combined androgen blockade in the prostate cancer trial. In the melanoma study, patients initiated ipilimumab treatment 1 week after the first vaccine dose. Patients were followed for UV1-specific immune responses at frequent intervals during vaccination, and every 6 months for up to 8 years in a follow-up period. Phenotypic and functional characterizations were performed on patient-derived vaccine-specific T cell responses. RESULTS: In total, 78.4% of treated patients mounted a measurable vaccine-induced T cell response in blood. The immune responses in the malignant melanoma trial, where UV1 was combined with ipilimumab, occurred more rapidly and frequently than in the lung and prostate cancer trials. In several patients, immune responses peaked years after their last vaccination. An in-depth characterization of the immune responses revealed polyfunctional CD4+ T cells producing interferon-γ and tumor necrosis factor-α on interaction with their antigen. CONCLUSION: Long-term immunomonitoring of patients showed highly dynamic and persistent telomerase peptide-specific immune responses lasting up to 7.5 years after the initial vaccination, suggesting a plausible functional role of these T cells in long-term survivors. The superior immune response kinetics observed in the melanoma study substantiate the rationale for future combinatorial treatment strategies with UV1 vaccination and checkpoint inhibition for rapid and frequent induction of anti-telomerase immune responses in patients with cancer.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Neoplasias da Próstata , Telomerase , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Seguimentos , Humanos , Imunidade , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Melanoma/tratamento farmacológico , Peptídeos , Neoplasias da Próstata/patologia , Neoplasias Cutâneas , Vacinação , Vacinas de Subunidades Antigênicas , Melanoma Maligno Cutâneo
10.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35334989

RESUMO

Heterologous primary immunization against SARS-CoV-2 is part of applied recommendations. However, little is known about duration of immune responses after heterologous vaccine regimens. To evaluate duration of immune responses after primary vaccination with homologous adeno-vectored ChAdOx1 nCoV-19 vaccine (ChAd) or heterologous ChAd/BNT162b2 mRNA vaccine (BNT), anti-spike-IgG and SARS-CoV-2 VOC-neutralizing antibody responses were measured in 354 healthcare workers (HCW) at 2 weeks, 3 months, 5 months and 6 months after the second vaccine dose. T-cell responses were investigated using a whole blood interferon gamma (IFN-γ) release assay 2 weeks and 3 months post second vaccine dose. Two hundred and ten HCW immunized with homologous BNT were enrolled for comparison of antibody responses. In study participants naïve to SARS-CoV-2 prior to vaccination, heterologous ChAd/BNT resulted in 6-fold higher peak anti-spike IgG antibody titers compared to homologous ChAd vaccination. The half-life of antibody titers was 3.1 months (95% CI 2.8-3.6) following homologous ChAd vaccination and 1.9 months (95% CI 1.7-2.1) after heterologous vaccination, reducing the GMT difference between the groups to 3-fold 6 months post vaccination. Peak T-cell responses were stronger in ChAd/BNT vaccinees, but no significant difference was observed 3 months post vaccination. SARS-CoV-2 infection prior to vaccination resulted in substantially higher peak GMTs and IFN-γ levels and enhanced SARS-CoV-2 specific antibody and T cell responses over time. Heterologous primary SARS-CoV-2 immunization with ChAd and BNT elicits a stronger initial immune response compared to homologous vaccination with ChAd. However, although the differences in humoral responses remain over 6 months, the difference in SARS-CoV-2 specific T cell responses are no longer significant three months after vaccination.

11.
EBioMedicine ; 70: 103523, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34391088

RESUMO

BACKGROUND: Recent reports demonstrate robust serological responses to a single dose of messenger RNA (mRNA) vaccines in individuals previously infected with SARS-CoV-2. Data on immune responses following a single-dose adenovirus-vectored vaccine expressing the SARS-CoV-2 spike protein (ChAdOx1 nCoV-19) in individuals with previous SARS-CoV-2 infection are however limited, and current guidelines recommend a two-dose regimen regardless of preexisting immunity. METHODS: We compared RBD-specific IgG and RBD-ACE2 blocking antibodies against SARS-CoV-2 wild type and variants of concern following two doses of the mRNA vaccine BNT162b2 in SARS-CoV-2 naïve healthcare workers (n=65) and a single dose of the adenovector vaccine ChAdOx1 nCoV-19 in 82 healthcare workers more than (n=45) and less than (n=37) 11 months post mild SARS-CoV-2 infection at time of vaccination. FINDINGS: The post-vaccine levels of RBD-specific IgG and neutralizing antibodies against the SARS-CoV-2 wild type and variants of concern including Delta lineage 1.617.2 were similar or higher in participants receiving a single dose of ChAdOx1 nCoV-19 vaccine post SARS-CoV-2 infection (both more than and less than 11 months post infection) compared to SARS-CoV-2 naïve participants who received two doses of BNT162b2 vaccine. INTERPRETATION: Our data support that a single dose ChAdOx1 nCoV-19 vaccine that is administered up to at least 11 months post SARS-CoV-2 infection serves as an effective immune booster. This provides a possible rationale for a single-dose vaccine regimen. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Vacina BNT162 , ChAdOx1 nCoV-19 , Feminino , Pessoal de Saúde , Humanos , Imunização Secundária/métodos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
12.
J Pathol ; 255(3): 243-256, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339045

RESUMO

Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases. Somatic mutations were analyzed by targeted sequencing for 82 genes and a tumor mutational load score was estimated. Transcriptomic immune patterns were established in 197 patients based on RNA sequencing data. The immune cell infiltration was variable and showed only poor association with specific mutations. The previously defined immune phenotypic patterns, desert, inflamed, and immune excluded, comprised 30, 13, and 57% of cases, respectively. Notably, mRNA immune activation and high estimated tumor mutational load were unique only for the inflamed pattern. However, in the unsupervised cluster analysis, including all immune cell markers, these conceptual patterns were only weakly reproduced. Instead, four immune classes were identified: (1) high immune cell infiltration, (2) high immune cell infiltration with abundance of CD20+ B cells, (3) low immune cell infiltration, and (4) a phenotype with an imprint of plasma cells and NK cells. This latter class was linked to better survival despite exhibiting low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, CTLA4). This compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC reveals two previously unrecognized immune classes. A refined immune classification, including traits of the humoral and innate immune response, is important to define the immunogenic potency of NSCLC in the era of immunotherapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Plasmócitos , Microambiente Tumoral/imunologia , Adulto , Idoso , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade
13.
Front Immunol ; 12: 682492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290704

RESUMO

Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth. Herein, we review tumor telomerase biology that may affect the efficacy of therapeutic vaccination and provide insights on optimal vaccine design and treatment combinations. Tumor types possessing mechanisms of increased telomerase expression combined with an immune permissive tumor microenvironment are expected to increase the therapeutic potential of telomerase-targeting cancer vaccines. Regardless, rational treatment combinations, such as checkpoint inhibitors, are likely necessary to bring out the true clinical potential of TCVs.


Assuntos
Biomarcadores Tumorais , Vacinas Anticâncer/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Telomerase/genética , Telomerase/metabolismo , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Neoplasias/terapia , Pesquisa , Microambiente Tumoral/imunologia , Vacinação
14.
Cancers (Basel) ; 13(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206510

RESUMO

Checkpoint inhibitors have been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients demonstrate a durable clinical response. PD-L1 scoring is currently the only biomarker measure routinely used to select patients for immunotherapy, but its predictive accuracy is modest. The aim of our study was to evaluate a proteomic assay for the analysis of patient plasma in the context of immunotherapy. Pretreatment plasma samples from 43 NSCLC patients who received anti-PD-(L)1 therapy were analyzed using a proximity extension assay (PEA) to quantify 92 different immune oncology-related proteins. The plasma protein levels were associated with clinical and histopathological parameters, as well as therapy response and survival. Unsupervised hierarchical cluster analysis revealed two patient groups with distinct protein profiles associated with high and low immune protein levels, designated as "hot" and "cold". Further supervised cluster analysis based on T-cell activation markers showed that higher levels of T-cell activation markers were associated with longer progression-free survival (PFS) (p < 0.01). The analysis of single proteins revealed that high plasma levels of CXCL9 and CXCL10 and low ADA levels were associated with better response and prolonged PFS (p < 0.05). Moreover, in an explorative response prediction model, the combination of protein markers (CXCL9, CXCL10, IL-15, CASP8, and ADA) resulted in higher accuracy in predicting response than tumor PD-L1 expression or each protein assayed individually. Our findings demonstrate a proof of concept for the use of multiplex plasma protein levels as a tool for anti-PD-(L)1 response prediction in NSCLC. Additionally, we identified protein signatures that could predict the response to anti-PD-(L)1 therapy.

15.
Nat Commun ; 12(1): 4127, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226552

RESUMO

Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Assuntos
Antígenos CD40/imunologia , Glioma/tratamento farmacológico , Estruturas Linfoides Terciárias/imunologia , Animais , Antineoplásicos/farmacologia , Linfócitos B/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Antígeno CD11b , Linhagem Celular Tumoral , Citocinas , Feminino , Expressão Gênica , Glioma/patologia , Humanos , Imunoglobulina G/genética , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides , Fenótipo , Linfócitos T , Microambiente Tumoral/imunologia
16.
PLoS One ; 16(7): e0253178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34232958

RESUMO

Bladder cancer, one of the most prevalent malignancies worldwide, remains hard to classify due to a staggering molecular complexity. Despite a plethora of diagnostic tools and therapies, it is hard to outline the key steps leading up to the transition from high-risk non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC). Carcinogen-induced murine models can recapitulate urothelial carcinogenesis and natural anti-tumor immunity. Herein, we have developed and profiled a novel model of progressive NMIBC based on 10 weeks of OH-BBN exposure in hepatocyte growth factor/cyclin dependent kinase 4 (R24C) (Hgf-Cdk4R24C) mice. The profiling of the model was performed by histology grading, single cell transcriptomic and proteomic analysis, while the derivation of a tumorigenic cell line was validated and used to assess in vivo anti-tumor effects in response to immunotherapy. Established NMIBC was present in females at 10 weeks post OH-BBN exposure while neoplasia was not as advanced in male mice, however all mice progressed to MIBC. Single cell RNA sequencing analysis revealed an intratumoral heterogeneity also described in the human disease trajectory. Moreover, although immune activation biomarkers were elevated in urine during carcinogen exposure, anti-programmed cell death protein 1 (anti-PD1) monotherapy did not prevent tumor progression. Furthermore, anti-PD1 immunotherapy did not control the growth of subcutaneous tumors formed by the newly derived urothelial cancer cell line. However, treatment with CpG-oligodeoxynucleotides (ODN) significantly decreased tumor volume, but only in females. In conclusion, the molecular map of this novel preclinical model of bladder cancer provides an opportunity to further investigate pharmacological therapies ahead with regards to both targeted drugs and immunotherapies to improve the strategies of how we should tackle the heterogeneous tumor microenvironment in urothelial bladder cancer to improve responses rates in the clinic.


Assuntos
Cálculos da Bexiga Urinária/metabolismo , Animais , Butilidroxibutilnitrosamina/farmacologia , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Proteinúria/urina , Proteômica/métodos , Análise de Sequência de RNA , Análise de Célula Única , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Cálculos da Bexiga Urinária/induzido quimicamente , Cálculos da Bexiga Urinária/urina , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , Urotélio/patologia
17.
Oncoimmunology ; 9(1): 1730538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231867

RESUMO

CD40-stimulating immunotherapy can elicit potent anti-tumor responses by activating dendritic cells and enhancing T-cell priming. Tumor vessels orchestrate T-cell recruitment during immune response, but the effect of CD40-stimulating immunotherapy on tumor endothelial cells has not been evaluated. Here, we have investigated how tumor endothelial cells transcriptionally respond to CD40-stimulating immunotherapy by isolating tumor endothelial cells from agonistic CD40 mAb- or isotype-treated mice bearing B16-F10 melanoma, and performing RNA-sequencing. Gene set enrichment analysis revealed that agonistic CD40 mAb therapy increased interferon (IFN)-related responses in tumor endothelial cells, including up-regulation of the immunosuppressive enzyme Indoleamine 2, 3-Dioxygenase 1 (IDO1). IDO1 was predominantly expressed in endothelial cells within the tumor microenvironment, and its expression in tumor endothelium was positively correlated to T-cell infiltration and to increased intratumoral expression of IFNγ. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFNγ, but not in response to CD40-stimulation. Combining agonistic CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth in B16-F10 melanoma, associated with increased activation of tumor-infiltrating T-cells. Hereby, we show that the tumor endothelial cells up-regulate IDO1 upon CD40-stimulating immunotherapy in response to increased IFNγ-secretion by T-cells, revealing a novel immunosuppressive feedback mechanism whereby tumor vessels limit T-cell activation.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Melanoma Experimental , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Melanoma Experimental/tratamento farmacológico , Camundongos , Microambiente Tumoral , Regulação para Cima
18.
J Thorac Oncol ; 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32028050

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

19.
20.
Front Immunol ; 11: 615240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679703

RESUMO

Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that 'depot' antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation-inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer/uso terapêutico , Imunoterapia Ativa/métodos , Neoplasias/terapia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/classificação , Fatores Etários , Compostos de Alúmen/administração & dosagem , Antineoplásicos/uso terapêutico , Ensaios Clínicos Fase III como Assunto/métodos , Terapia Combinada , Citocinas/administração & dosagem , Citocinas/imunologia , Sinergismo Farmacológico , Emulsões , Microbioma Gastrointestinal/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Estilo de Vida , Lipossomos/administração & dosagem , Depleção Linfocítica , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/imunologia , Nanopartículas/administração & dosagem , Radioterapia , Saponinas/administração & dosagem , Saponinas/imunologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Potência de Vacina , Virossomos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA